ترغب بنشر مسار تعليمي؟ اضغط هنا

Vertex algebraic intertwining operators among generalized Verma modules for affine Lie algebras

162   0   0.0 ( 0 )
 نشر من قبل Robert McRae
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English
 تأليف Robert McRae




اسأل ChatGPT حول البحث

We find sufficient conditions for the construction of vertex algebraic intertwining operators, among generalized Verma modules for an affine Lie algebra $hat{mathfrak{g}}$, from $mathfrak{g}$-module homomorphisms. When $mathfrak{g}=mathfrak{sl}_2$, these results extend previous joint work with J. Yang, but the method used here is different. Here, we construct intertwining operators by solving Knizhnik-Zamolodchikov equations for three-point correlation functions associated to $hat{mathfrak{g}}$, and we identify obstructions to the construction arising from the possible non-existence of series solutions having a prescribed form.



قيم البحث

اقرأ أيضاً

139 - Fulin Chen , Shaobin Tan , Nina Yu 2021
For any nullity $2$ extended affine Lie algebra $mathcal{E}$ of maximal type and $ellinmathbb{C}$, we prove that there exist a vertex algebra $V_{mathcal{E}}(ell)$ and an automorphism group $G$ of $V_{mathcal{E}}(ell)$ equipped with a linear characte r $chi$, such that the category of restricted $mathcal{E}$-modules of level $ell$ is canonically isomorphic to the category of $(G,chi)$-equivariant $phi$-coordinated quasi $V_{mathcal{E}}(ell)$-modules. Moreover, when $ell$ is a nonnegative integer, there is a quotient vertex algebra $L_{mathcal{E}}(ell)$ of $V_{mathcal{E}}(ell)$ modulo by a $G$-stable ideal, and we prove that the integrable restricted $mathcal{E}$-modules of level $ell$ are exactly the $(G,chi)$-equivariant $phi$-coordinated quasi $L_{mathcal{E}}(ell)$-modules.
213 - Hongyan Guo 2021
In this paper, we explore a canonical connection between the algebra of $q$-difference operators $widetilde{V}_{q}$, affine Lie algebra and affine vertex algebras associated to certain subalgebra $mathcal{A}$ of the Lie algebra $mathfrak{gl}_{infty}$ . We also introduce and study a category $mathcal{O}$ of $widetilde{V}_{q}$-modules. More precisely, we obtain a realization of $widetilde{V}_{q}$ as a covariant algebra of the affine Lie algebra $widehat{mathcal{A}^{*}}$, where $mathcal{A}^{*}$ is a 1-dimensional central extension of $mathcal{A}$. We prove that restricted $widetilde{V_{q}}$-modules of level $ell_{12}$ correspond to $mathbb{Z}$-equivariant $phi$-coordinated quasi-modules for the vertex algebra $V_{widetilde{mathcal{A}}}(ell_{12},0)$, where $widetilde{mathcal{A}}$ is a generalized affine Lie algebra of $mathcal{A}$. In the end, we show that objects in the category $mathcal{O}$ are restricted $widetilde{V_{q}}$-modules, and we classify simple modules in the category $mathcal{O}$.
In this paper, we study nullity-2 toroidal extended affine Lie algebras in the context of vertex algebras and their $phi$-coordinated modules. Among the main results, we introduce a variant of toroidal extended affine Lie algebras, associate vert ex algebras to the variant Lie algebras, and establish a canonical connection between modules for toroidal extended affine Lie algebras and $phi$-coordinated modules for these vertex algebras. Furthermore, by employing some results of Billig, we obtain an explicit realization of irreducible modules for the variant Lie algebras.
239 - Shaobin Tan , Xiufu Zhang 2008
Let $mathbb{F}$ be a field of characteristic 0, $G$ an additive subgroup of $mathbb{F}$, $alphain mathbb{F}$ satisfying $alpha otin G, 2alphain G$. We define a class of infinite-dimensional Lie algebras which are called generalized Schr{o}dinger-Vira soro algebras and use $mathfrak{gsv}[G,alpha]$ to denote the one corresponding to $G$ and $alpha$. In this paper the automorphism group and irreducibility of Verma modules for $mathfrak{gsv}[G,alpha]$ are completely determined.
A representation of the central extension of the unitary Lie algebra coordinated with a skew Laurent polynomial ring is constructed using vertex operators over an integral Z_2-lattice. The irreducible decomposition of the representation is explicitly computed and described. As a by-product, some fundamental representations of affine Kac-Moody Lie algebra of type $A_n^{(2)}$ are recovered by the new method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا