ترغب بنشر مسار تعليمي؟ اضغط هنا

Noise-Induced Stabilization of Planar Flows II

88   0   0.0 ( 0 )
 نشر من قبل David Herzog
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We continue the work started in Part I of this article, showing how the addition of noise can stabilize an otherwise unstable system. The analysis makes use of nearly optimal Lyapunov functions. In this continuation, we remove the main limiting assumption of Part I by an inductive procedure as well as establish a lower bound which shows that our construction is radially sharp. We also prove a version of Peskirs cite{Peskir_07} generalized Tanaka formula adapted to patching together Lyapunov functions. This greatly simplifies the analysis used in previous works.



قيم البحث

اقرأ أيضاً

We study the generalizations of Jonathan Kings rank-one theorems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one R-actions (flows) and rank-one Z^n-actions. We prove that these results remain valid in the case of rank-one flows . In the case of rank-one Z^n actions, where counterexamples have already been given, we prove partial Weak-Closure Theorem and partial rigidity of factors.
We provide a rather general perfection result for crude local semi-flows taking values in a Polish space showing that a crude semi-flow has a modification which is a (perfect) local semi-flow which is invariant under a suitable metric dynamical syste m. Such a (local) semi-flow induces a (local) random dynamical system. Then we show that this result can be applied to several classes of stochastic differential equations driven by semimartingales with stationary increments such as equations with locally monotone coefficients and equations with singular drift. For these examples it was previously unknown whether they generate a (local) random dynamical system or not.
Output-based controllers are known to be fragile with respect to model uncertainties. The standard $mathcal{H}_{infty}$-control theory provides a general approach to robust controller design based on the solution of the $mathcal{H}_{infty}$-Riccati e quations. In view of stabilizing incompressible flows in simulations, two major challenges have to be addressed: the high-dimensional nature of the spatially discretized model and the differential-algebraic structure that comes with the incompressibility constraint. This work demonstrates the synthesis of low-dimensional robust controllers with guaranteed robustness margins for the stabilization of incompressible flow problems. The performance and the robustness of the reduced-order controller with respect to linearization and model reduction errors are investigated and illustrated in numerical examples.
We study the limit behavior of differential equations with non-Lipschitz coefficients that are perturbed by a small self-similar noise. It is proved that the limiting process is equal to the maximal solution or minimal solution with certain probabili ties $p_+$ and $p_-=1-p_+$, respectively. We propose a space-time transformation that reduces the investigation of the original problem to the study of the exact growth rate of a solution to a certain SDE with self-similar noise. This problem is interesting in itself. Moreover, the probabilities $p_+$ and $p_-$ coincide with probabilities that the solution of the transformed equation converges to $+infty$ or $-infty$ as $ttoinfty,$ respectively.
209 - Yan Wang 2014
In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bo unded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا