ﻻ يوجد ملخص باللغة العربية
We study the generalizations of Jonathan Kings rank-one theorems (Weak-Closure Theorem and rigidity of factors) to the case of rank-one R-actions (flows) and rank-one Z^n-actions. We prove that these results remain valid in the case of rank-one flows. In the case of rank-one Z^n actions, where counterexamples have already been given, we prove partial Weak-Closure Theorem and partial rigidity of factors.
Various mixing properties of $beta$-, $beta$- and Gaussian Delaunay tessellations in $mathbb{R}^{d-1}$ are studied. It is shown that these tessellation models are absolutely regular, or $beta$-mixing. In the $beta$- and the Gaussian case exponential
In this monograph, we give an account of the relationship between the algebraic structure of finitely generated and countable groups and the regularity with which they act on manifolds. We concentrate on the case of one--dimensional manifolds, culmin
We independently assign a non-negative value, as a capacity for the quantity of flows per unit time, with a distribution F to each edge on the Z^d lattice. We consider the maximum flows through the edges of two disjoint sets, that is from a source to
Consider a minimal free topological dynamical system $(X, T, mathbb{Z}^d)$. It is shown that the comparison radius of the crossed product C*-algebra $mathrm{C}(X) rtimes mathbb{Z}^d$ is at most the half of the mean topological dimension of $(X, T, ma
We continue the work started in Part I of this article, showing how the addition of noise can stabilize an otherwise unstable system. The analysis makes use of nearly optimal Lyapunov functions. In this continuation, we remove the main limiting assum