ترغب بنشر مسار تعليمي؟ اضغط هنا

Almost periodic solutions for stochastic differential equations with exponential dichotomy driven by Levy noise

206   0   0.0 ( 0 )
 نشر من قبل Zhenxin Liu
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Yan Wang




اسأل ChatGPT حول البحث

In this paper, we study almost periodic solutions for semilinear stochastic differential equations driven by L{e}vy noise with exponential dichotomy property. Under suitable conditions on the coefficients, we obtain the existence and uniqueness of bounded solutions. Furthermore, this unique bounded solution is almost periodic in distribution under slightly stronger conditions. We also give two examples to illustrate our results.



قيم البحث

اقرأ أيضاً

175 - Zhenxin Liu , Wenhe Wang 2015
Favard separation method is an important means to study almost periodic solutions to linear differential equations; later, Amerio applied Favards idea to nonlinear differential equations. In this paper, by appropriate choosing separation and almost p eriodicity in distribution sense, we obtain the Favard and Amerio type theorems for stochastic differential equations.
133 - Xin Liu , Zhenxin Liu 2020
In this paper, we use a unified framework to study Poisson stable (including stationary, periodic, quasi-periodic, almost periodic, almost automorphic, Birkhoff recurrent, almost recurrent in the sense of Bebutov, Levitan almost periodic, pseudo-peri odic, pseudo-recurrent and Poisson stable) solutions for semilinear stochastic differential equations driven by infinite dimensional Levy noise with large jumps. Under suitable conditions on drift, diffusion and jump coefficients, we prove that there exist solutions which inherit the Poisson stability of coefficients. Further we show that these solutions are globally asymptotically stable in square-mean sense. Finally, we illustrate our theoretical results by several examples.
159 - Yong Li , Zhenxin Liu , 2016
In this paper, we discuss the relationships between stability and almost periodicity for solutions of stochastic differential equations. Our essential idea is to get stability of solutions or systems by some inherited properties of Lyapunov functions . Under suitable conditions besides Lyapunov functions, we obtain the existence of almost periodic solutions in distribution.
We construct an efficient integrator for stochastic differential systems driven by Levy processes. An efficient integrator is a strong approximation that is more accurate than the corresponding stochastic Taylor approximation, to all orders and indep endent of the governing vector fields. This holds provided the driving processes possess moments of all orders and the vector fields are sufficiently smooth. Moreover the efficient integrator in question is optimal within a broad class of perturbations for half-integer global root mean-square orders of convergence. We obtain these results using the quasi-shuffle algebra of multiple iterated integrals of independent Levy processes.
We consider a general class of high order weak approximation schemes for stochastic differential equations driven by Levy processes with infinite activity. These schemes combine a compound Poisson approximation for the jump part of the Levy process w ith a high order scheme for the Brownian driven component, applied between the jump times. The overall approximation is analyzed using a stochastic splitting argument. The resulting error bound involves separate contributions of the compound Poisson approximation and of the discretization scheme for the Brownian part, and allows, on one hand, to balance the two contributions in order to minimize the computational time, and on the other hand, to study the optimal design of the approximating compound Poisson process. For driving processes whose Levy measure explodes near zero in a regularly varying way, this procedure allows to construct discretization schemes with arbitrary order of convergence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا