ترغب بنشر مسار تعليمي؟ اضغط هنا

Isomonodromic tau-functions from Liouville conformal blocks

352   0   0.0 ( 0 )
 نشر من قبل Oleg Lisovyy
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with $SL(2,mathbb{C})$-valued monodromy on Riemann surfaces of genus zero with $n$ punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at $c=1$. This implies a similar representation for the isomonodromic tau-function. In the case $n=4$ we thereby get a proof of the relation between tau-functions and conformal blocks discovered in cite{GIL}. We briefly discuss a possible application of our results to the study of relations between certain $mathcal{N}=2$ supersymmetric gauge theories and conformal field theory.



قيم البحث

اقرأ أيضاً

We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar opera tors, reducing them to a linear combination of blocks with scalars exchanged. We additionally derive recursion relations for the conformal blocks which appear when one of the external operators in the 5-point function has spin 1 or 2. Our results allow us to formulate positivity constraints using 5-point functions which describe the expectation value of the energy operator in bilocal states created by two scalars.
379 - R. Jackiw , S.-Y. Pi 2012
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho ugh the operators with which we work need not be primary and the states are not conformally invariant. We find that only one conformal block contributes to the four-point function. We describe some further properties of the states that we use and we construct dynamical evolution generated by the compact generator of SO(2.1).
We show how to map Grothendiecks dessins denfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conform al blocks. We explicitly demonstrate the 6 trivalent dessins with 4 punctures on the sphere. We find that the parametrizations obtained from a dessin should be related by certain duality for gauge theories. Then we will discuss that some dessins could correspond to conformal blocks satisfying certain rules in different minimal models.
Generalizations of the AGT correspondence between 4D $mathcal{N}=2$ $SU(2)$ supersymmetric gauge theory on ${mathbb {C}}^2$ with $Omega$-deformation and 2D Liouville conformal field theory include a correspondence between 4D $mathcal{N}=2$ $SU(N)$ su persymmetric gauge theories, $N = 2, 3, ldots$, on ${mathbb {C}}^2/{mathbb {Z}}_n$, $n = 2, 3, ldots$, with $Omega$-deformation and 2D conformal field theories with $mathcal{W}^{, para}_{N, n}$ ($n$-th parafermion $mathcal{W}_N$) symmetry and $widehat{mathfrak{sl}}(n)_N$ symmetry. In this work, we trivialize the factor with $mathcal{W}^{, para}_{N, n}$ symmetry in the 4D $SU(N)$ instanton partition functions on ${mathbb {C}}^2/{mathbb {Z}}_n$ (by using specific choices of parameters and imposing specific conditions on the $N$-tuples of Young diagrams that label the states), and extract the 2D $widehat{mathfrak{sl}}(n)_N$ WZW conformal blocks, $n = 2, 3, ldots$, $N = 1, 2, ldots, .$
We present an approach that gives rigorous construction of a class of crossing invariant functions in $c=1$ CFTs from the weakly invariant distributions on the moduli space $mathcal M_{0,4}^{SL(2,mathbb{C})}$ of $SL(2,mathbb{C})$ flat connections on the sphere with four punctures. By using this approach we show how to obtain correlation functions in the Ashkin-Teller and the Runkel-Watts theory. Among the possible crossing-invariant theories, we obtain also the analytic Liouville theory, whose consistence was assumed only on the basis of numerical tests.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا