ﻻ يوجد ملخص باللغة العربية
We consider 5-point functions in conformal field theories in d > 2 dimensions. Using weight-shifting operators, we derive recursion relations which allow for the computation of arbitrary conformal blocks appearing in 5-point functions of scalar operators, reducing them to a linear combination of blocks with scalars exchanged. We additionally derive recursion relations for the conformal blocks which appear when one of the external operators in the 5-point function has spin 1 or 2. Our results allow us to formulate positivity constraints using 5-point functions which describe the expectation value of the energy operator in bilocal states created by two scalars.
Extending previous work on 2 -- and 3 -- point functions, we study the 4 -- point function and its conformal block structure in conformal quantum mechanics CFT$_1$, which realizes the SO(2,1) symmetry group. Conformal covariance is preserved even tho
The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with $SL(2,mathbb{C})$-valued monodromy on Riemann surfaces of genus zero with $n$ punctures can be solved by taking suitable linear combinations
We show how to map Grothendiecks dessins denfants to algebraic curves as Seiberg-Witten curves, then use the mirror map and the AGT map to obtain the corresponding 4d $mathcal{N}=2$ supersymmetric instanton partition functions and 2d Virasoro conform
We study large $c$ conformal blocks outside the known limits. This work seems to be hard, but it is possible numerically by using the Zamolodchikov recursion relation. As a result, we find new some properties of large $c$ conformal blocks with a pair
It was recently shown that multi-point conformal blocks in higher dimensional conformal field theory can be considered as joint eigenfunctions for a system of commuting differential operators. The latter arise as Hamiltonians of a Gaudin integrable s