ﻻ يوجد ملخص باللغة العربية
We present an approach that gives rigorous construction of a class of crossing invariant functions in $c=1$ CFTs from the weakly invariant distributions on the moduli space $mathcal M_{0,4}^{SL(2,mathbb{C})}$ of $SL(2,mathbb{C})$ flat connections on the sphere with four punctures. By using this approach we show how to obtain correlation functions in the Ashkin-Teller and the Runkel-Watts theory. Among the possible crossing-invariant theories, we obtain also the analytic Liouville theory, whose consistence was assumed only on the basis of numerical tests.
We derive Fredholm determinant representation for isomonodromic tau functions of Fuchsian systems with $n$ regular singular points on the Riemann sphere and generic monodromy in $mathrm{GL}(N,mathbb C)$. The corresponding operator acts in the direct
The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with $SL(2,mathbb{C})$-valued monodromy on Riemann surfaces of genus zero with $n$ punctures can be solved by taking suitable linear combinations
We define a tau function for a generic Riemann-Hilbert problem posed on a union of non-intersecting smooth closed curves with jump matrices analytic in their neighborhood. The tau function depends on parameters of the jumps and is expressed as the Fr
We discuss an extension of the Jimbo-Miwa-Ueno differential 1-form to a form closed on the full space of extended monodromy data of systems of linear ordinary differential equations with rational coefficients. This extension is based on the results o
In this first paper, we start the analysis of correlation functions of quantum spin chains with general integrable boundary conditions. We initiate these computations for the open XXX spin 1/2 quantum chains with some unparallel magnetic fields allow