ترغب بنشر مسار تعليمي؟ اضغط هنا

Linear-optical simulation of the cooling of a cluster-state Hamiltonian system

38   0   0.0 ( 0 )
 نشر من قبل Gabriel Horacio Aguilar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A measurement-based quantum computer could consist of a local-gapped Hamiltonian system, whose thermal states --at sufficiently low temperature-- are universal resources for the computation. Initialization of the computer would correspond to cooling the system. We perform an experimental quantum simulation of such cooling process with entangled photons. We prepare three-qubit thermal cluster states exploiting the equivalence between local dephasing and thermalisation for these states. This allows us to tune the systems temperature by changing the dephasing strength. We monitor the entanglement as the system cools down and observe the transitions from separability to bound entanglement, and then to free entanglement. We also analyze the performance of the system for measurement-based single-qubit state preparation. These studies constitute a basic characterisation of experimental cluster-state computation under imperfect conditions.

قيم البحث

اقرأ أيضاً

The problem of simulating complex quantum processes on classical computers gave rise to the field of quantum simulations. Quantum simulators solve problems, such as Boson sampling, where classical counterparts fail. In another field of physics, the u nification of general relativity and quantum theory is one of the greatest challenges of our time. One leading approach is Loop Quantum Gravity (LQG). Here, we connect these two fields and design a linear-optical simulator such that the evolution of the optical quantum gates simulates the spinfoam amplitudes of LQG. It has been shown that computing transition amplitudes in simple quantum field theories falls into the class BQP -- which strongly suggests that computing transition amplitudes of LQG are classically intractable. Therefore, these amplitudes are efficiently computable with universal quantum computers which are, alas, possibly decades away. We propose here an alternative special-purpose linear-optical quantum computer, which can be implemented using current technologies. This machine is capable of efficiently computing these quantities. This work opens a new way to relate quantum gravity to quantum information and will expand our understanding of the theory.
We propose an optimization scheme for ground-state cooling of a mechanical mode by coupling to a general three-level system. We formulate the optimization scheme, using the master equation approach, over a broad range of system parameters including d etunings, decay rates, coupling strengths, and pumping rate. We implement the optimization scheme on three physical systems: a colloidal quantum dot coupled to its confined phonon mode, a polariton coupled to a mechanical resonator mode, and a coupled-cavity system coupled to a mechanical resonator mode. These three physical systems span a broad range of mechanical mode frequencies, coupling rates, and decay rates. Our optimization scheme lowers the stead-state phonon number in all three cases by orders of magnitude. We also calculate the net cooling rate by estimating the phonon decay rate and show that the optimized system parameters also result in efficient cooling. The proposed optimization scheme can be readily extended to any generic driven three-level system coupled to a mechanical mode.
Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multip le ancilla qubits and multi-qubit control gates. We propose a drastically simplified quantum circuit called the minimal QSVT circuit, which uses only one ancilla qubit to simulate a class of $n$-qubit random Hamiltonians. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. We demonstrate that QUES is directly related to the circuit fidelity, and the classical hardness of an associated quantum circuit sampling problem. Theoretical analysis suggests under suitable assumptions, there exists an optimal simulation time $t^{text{opt}}approx 4.81$, at which even a noisy quantum device may be sufficient to demonstrate the classical hardness.
We give an alternative derivation for the explicit formula of the effective Hamiltonian describing the evolution of the quantum state of any number of photons entering a linear optics multiport. The description is based on the effective Hamiltonian o f the optical system for a single photon and comes from relating the evolution in the Lie group that describes the unitary evolution matrices in the Hilbert space of the photon states to the evolution in the Lie algebra of the Hamiltonians for one and multiple photons. We give a few examples of how a group theory approach can shed light on some properties of devices with two input ports.
We present the point-coupling Hamiltonian as a model for frequency-independent linear optical devices acting on propagating optical modes described as a continua of harmonic oscillators. We formally integrate the Heisenberg equations of motion for th is Hamiltonian, calculate its quantum scattering matrix, and show that an application of the quantum scattering matrix on an input state is equivalent to applying the inverse of classical scattering matrix on the annihilation operators describing the optical modes. We show how to construct the point-coupling Hamiltonian corresponding to a general linear optical device described by a classical scattering matrix, and provide examples of Hamiltonians for some commonly used linear optical devices. Finally, in order to demonstrate the practical utility of the point-coupling Hamiltonian, we use it to rigorously formulate a matrix-product-state based simulation for time-delayed feedback systems wherein the feedback is provided by a linear optical device described by a scattering matrix as opposed to a hard boundary condition (e.g. a mirror with less than unity reflectivity).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا