ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimization of ground-state cooling of a mechanical mode using a three-level system

105   0   0.0 ( 0 )
 نشر من قبل Shilpi Gupta
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose an optimization scheme for ground-state cooling of a mechanical mode by coupling to a general three-level system. We formulate the optimization scheme, using the master equation approach, over a broad range of system parameters including detunings, decay rates, coupling strengths, and pumping rate. We implement the optimization scheme on three physical systems: a colloidal quantum dot coupled to its confined phonon mode, a polariton coupled to a mechanical resonator mode, and a coupled-cavity system coupled to a mechanical resonator mode. These three physical systems span a broad range of mechanical mode frequencies, coupling rates, and decay rates. Our optimization scheme lowers the stead-state phonon number in all three cases by orders of magnitude. We also calculate the net cooling rate by estimating the phonon decay rate and show that the optimized system parameters also result in efficient cooling. The proposed optimization scheme can be readily extended to any generic driven three-level system coupled to a mechanical mode.



قيم البحث

اقرأ أيضاً

The simultaneous ground-state cooling of multiple degenerate or near-degenerate mechanical modes coupled to a common cavity-field mode has become an outstanding challenge in cavity optomechanics. This is because the dark modes formed by these mechani cal modes decouple from the cavity mode and prevent extracting energy from the dark modes through the cooling channel of the cavity mode. Here we propose a universal and reliable dark-mode-breaking method to realize the simultaneous ground-state cooling of two degenerate or nondegenerate mechanical modes by introducing a phasedependent phonon-exchange interaction, which is used to form a loop-coupled configuration. We find an asymmetrical cooling performance for the two mechanical modes and expound this phenomenon based on the nonreciprocal energy transfer mechanism, which leads to the directional flow of phonons between the two mechanical modes. We also generalize this method to cool multiple mechanical modes. The physical mechanism in this cooling scheme has general validity and this method can be extended to break other dark-mode and dark-state effects in physics.
A quantum theory of cooling of a mechanical oscillator by radiation pressure-induced dynamical back-action is developed, which is analogous to sideband cooling of trapped ions. We find that final occupancies well below unity can be attained when the mechanical oscillation frequency is larger than the cavity linewidth. It is shown that the final average occupancy can be retrieved directly from the optical output spectrum.
83 - Yu-Long Liu , Yu-xi Liu 2016
When a gain system is coupled to a loss system, the energy usually flows from the gain system to the loss one. We here present a counterintuitive theory for the ground-state cooling of the mechanical resonator in optomechanical system via a gain cavi ty. The energy flows first from the mechanical resonator into the loss cavity, then into the gain cavity, and finally localizes there. The energy localization in the gain cavity dramatically enhances the cooling rate of the mechanical resonator. Moreover, we show that unconventional optical spring effect, e.g., giant frequency shift and optically induced damping of the mechanical resonator, can be realized. Those feature a pre-cooling free ground-state cooling, i.e., the mechanical resonator in thermal excitation at room temperature can directly be cooled to its ground state. This cooling approach has the potential application for fundamental tests of quantum physics without complicated cryogenic setups.
We demonstrate ground-state cooling of a trapped ion using radio-frequency (RF) radiation. This is a powerful tool for the implementation of quantum operations, where RF or microwave radiation instead of lasers is used for motional quantum state engi neering. We measure a mean phonon number of $overline{n} = 0.13(4)$ after sideband cooling, corresponding to a ground-state occupation probability of 88(7)%. After preparing in the vibrational ground state, we demonstrate motional state engineering by driving Rabi oscillations between the n=0 and n=1 Fock states. We also use the ability to ground-state cool to accurately measure the motional heating rate and report a reduction by almost two orders of magnitude compared to our previously measured result, which we attribute to carefully eliminating sources of electrical noise in the system.
Sympathetic cooling with ultracold atoms and atomic ions enables ultralow temperatures in systems where direct laser or evaporative cooling is not possible. It has so far been limited to the cooling of other microscopic particles, with masses up to $ 90$ times larger than that of the coolant atom. Here we use ultracold atoms to sympathetically cool the vibrations of a Si$_3$N$_4$ nanomembrane, whose mass exceeds that of the atomic ensemble by a factor of $10^{10}$. The coupling of atomic and membrane vibrations is mediated by laser light over a macroscopic distance and enhanced by placing the membrane in an optical cavity. We observe cooling of the membrane vibrations from room temperature to $650pm 230$ mK, exploiting the large atom-membrane cooperativity of our hybrid optomechanical system. Our scheme enables ground-state cooling and quantum control of low-frequency oscillators such as nanomembranes or levitated nanoparticles, in a regime where purely optomechanical techniques cannot reach the ground state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا