ﻻ يوجد ملخص باللغة العربية
Hamiltonian simulation is one of the most important problems in quantum computation, and quantum singular value transformation (QSVT) is an efficient way to simulate a general class of Hamiltonians. However, the QSVT circuit typically involves multiple ancilla qubits and multi-qubit control gates. We propose a drastically simplified quantum circuit called the minimal QSVT circuit, which uses only one ancilla qubit to simulate a class of $n$-qubit random Hamiltonians. We formulate a simple metric called the quantum unitary evolution score (QUES), which is a scalable quantum benchmark and can be verified without any need for classical computation. We demonstrate that QUES is directly related to the circuit fidelity, and the classical hardness of an associated quantum circuit sampling problem. Theoretical analysis suggests under suitable assumptions, there exists an optimal simulation time $t^{text{opt}}approx 4.81$, at which even a noisy quantum device may be sufficient to demonstrate the classical hardness.
We study how parallelism can speed up quantum simulation. A parallel quantum algorithm is proposed for simulating the dynamics of a large class of Hamiltonians with good sparse structures, called uniform-structured Hamiltonians, including various Ham
The ability to simulate a fermionic system on a quantum computer is expected to revolutionize chemical engineering, materials design, nuclear physics, to name a few. Thus, optimizing the simulation circuits is of significance in harnessing the power
We revisit quantum phase estimation algorithms for the purpose of obtaining the energy levels of many-body Hamiltonians and pay particular attention to the statistical analysis of their outputs. We introduce the mean phase direction of the parent dis
We present a quantum algorithm for the dynamical simulation of time-dependent Hamiltonians. Our method involves expanding the interaction-picture Hamiltonian as a sum of generalized permutations, which leads to an integral-free Dyson series of the ti
Product formula approximations of the time-evolution operator on quantum computers are of great interest due to their simplicity, and good scaling with system size by exploiting commutativity between Hamiltonian terms. However, product formulas exhib