ﻻ يوجد ملخص باللغة العربية
The problem of simulating complex quantum processes on classical computers gave rise to the field of quantum simulations. Quantum simulators solve problems, such as Boson sampling, where classical counterparts fail. In another field of physics, the unification of general relativity and quantum theory is one of the greatest challenges of our time. One leading approach is Loop Quantum Gravity (LQG). Here, we connect these two fields and design a linear-optical simulator such that the evolution of the optical quantum gates simulates the spinfoam amplitudes of LQG. It has been shown that computing transition amplitudes in simple quantum field theories falls into the class BQP -- which strongly suggests that computing transition amplitudes of LQG are classically intractable. Therefore, these amplitudes are efficiently computable with universal quantum computers which are, alas, possibly decades away. We propose here an alternative special-purpose linear-optical quantum computer, which can be implemented using current technologies. This machine is capable of efficiently computing these quantities. This work opens a new way to relate quantum gravity to quantum information and will expand our understanding of the theory.
This paper draws on a number of Roger Penroses ideas - including the non-Hamiltonian phase-space flow of the Hawking Box, Conformal Cyclic Cosmology, non-computability and gravitationally induced quantum state reduction - in order to propose a radica
Recently a boundary energy-momentum tensor $T_{zz}$ has been constructed from the soft graviton operator for any 4D quantum theory of gravity in asymptotically flat space. Up to an anomaly which is one-loop exact, $T_{zz}$ generates a Virasoro action
We report the first electronic structure calculation performed on a quantum computer without exponentially costly precompilation. We use a programmable array of superconducting qubits to compute the energy surface of molecular hydrogen using two dist
Understanding gravity in the framework of quantum mechanics is one of the great challenges in modern physics. Along this line, a prime question is to find whether gravity is a quantum entity subject to the rules of quantum mechanics. It is fair to sa
In this paper, we generalize Jordan-Lee-Preskill, an algorithm for simulating flat-space quantum field theories, to 3+1 dimensional inflationary spacetime. The generalized algorithm contains the encoding treatment, the initial state preparation, the