ﻻ يوجد ملخص باللغة العربية
We introduce the category of finite strings and study its basic properties. The category is closely related to the augmented simplex category, and it models categories of linear representations. Each lattice of non-crossing partitions arises naturally as a lattice of subobjects.
Let $(V,omega)$ be an orthosympectic $mathbb Z_2$-graded vector space and let $mathfrak g:=mathfrak{gosp}(V,omega)$ denote the Lie superalgebra of similitudes of $(V,omega)$. When the space $mathscr P(V)$ of superpolynomials on $V$ is emph{not} a com
We establish an isomorphism between the center of the Heisenberg category defined by Khovanov and the algebra $Lambda^*$ of shifted symmetric functions defined by Okounkov-Olshanski. We give a graphical description of the shifted power and Schur base
The core of a finite-dimensional modular representation $M$ of a finite group $G$ is its largest non-projective summand. We prove that the dimensions of the cores of $M^{otimes n}$ have algebraic Hilbert series when $M$ is Omega-algebraic, in the sen
We define an infinite chain of subcategories of the partition category by introducing the left-height ($l$) of a partition. For the Brauer case, the chain starts with the Temperley-Lieb ($l=-1$) and ends with the Brauer ($l=infty$) category. The End
A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category.