ترغب بنشر مسار تعليمي؟ اضغط هنا

Monte Carlo Computation of the Vassiliev knot invariant of degree 2 in the integral representation

115   0   0.0 ( 0 )
 نشر من قبل Franco Ferrari
 تاريخ النشر 2014
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In mathematics there is a wide class of knot invariants that may be expressed in the form of multiple line integrals computed along the trajectory C describing the spatial conformation of the knot. In this work it is addressed the problem of evaluating invariants of this kind in the case in which the knot is discrete, i.e. its trajectory is constructed by joining together a set of segments of constant length. Such discrete knots appear almost everywhere in numerical simulations of systems containing one dimensional ring-shaped objects. Examples are polymers, the vortex lines in fluids and superfluids like helium and other quantum liquids. Formally, the trajectory of a discrete knot is a piecewise smooth curve characterized by sharp corners at the joints between contiguous segments. The presence of these corners spoils the topological invariance of the knot invariants considered here and prevents the correct evaluation of their values. To solve this problem, a smoothing procedure is presented, which eliminates the sharp corners and transforms the original path C into a curve that is everywhere differentiable. The procedure is quite general and can be applied to any discrete knot defined off or on lattice. This smoothing algorithm is applied to the computation of the Vassiliev knot invariant of degree 2 denoted here with the symbol r(C). This is the simplest knot invariant that admits a definition in terms of multiple line integrals. For a fast derivation of r(C), it is used a Monte Carlo integration technique. It is shown that, after the smoothing, the values of r(C) may be evaluated with an arbitrary precision. Several algorithms for the fast computation of the Vassiliev knot invariant of degree 2 are provided.



قيم البحث

اقرأ أيضاً

82 - Yunyun Ma , Fuming Ma , Yukun Guo 2021
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement te chnique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.
Reaction networks are often used to model interacting species in fields such as biochemistry and ecology. When the counts of the species are sufficiently large, the dynamics of their concentrations are typically modeled via a system of differential e quations. However, when the counts of some species are small, the dynamics of the counts are typically modeled stochastically via a discrete state, continuous time Markov chain. A key quantity of interest for such models is the probability mass function of the process at some fixed time. Since paths of such models are relatively straightforward to simulate, we can estimate the probabilities by constructing an empirical distribution. However, the support of the distribution is often diffuse across a high-dimensional state space, where the dimension is equal to the number of species. Therefore generating an accurate empirical distribution can come with a large computational cost. We present a new Monte Carlo estimator that fundamentally improves on the classical Monte Carlo estimator described above. It also preserves much of classical Monte Carlos simplicity. The idea is basically one of conditional Monte Carlo. Our conditional Monte Carlo estimator has two parameters, and their choice critically affects the performance of the algorithm. Hence, a key contribution of the present work is that we demonstrate how to approximate optimal values for these parameters in an efficient manner. Moreover, we provide a central limit theorem for our estimator, which leads to approximate confidence intervals for its error.
In this paper we present an efficient and robust approach to compute a normalized B-spline-like basis for spline spaces with pieces drawn from extended Tchebycheff spaces. The extended Tchebycheff spaces and their dimensions are allowed to change fro m interval to interval. The approach works by constructing a matrix that maps a generalized Bernstein-like basis to the B-spline-like basis of interest. The B-spline-like basis shares many characterizing properties with classical univariate B-splines and may easily be incorporated in existing spline codes. This may contribute to the full exploitation of Tchebycheffian splines in applications, freeing them from the restricted role of an elegant theoretical extension of polynomial splines. Numerical examples are provided that illustrate the procedure described.
We propose a novel $hp$-multilevel Monte Carlo method for the quantification of uncertainties in the compressible Navier-Stokes equations, using the Discontinuous Galerkin method as deterministic solver. The multilevel approach exploits hierarchies o f uniformly refined meshes while simultaneously increasing the polynomial degree of the ansatz space. It allows for a very large range of resolutions in the physical space and thus an efficient decrease of the statistical error. We prove that the overall complexity of the $hp$-multilevel Monte Carlo method to compute the mean field with prescribed accuracy is, in best-case, of quadratic order with respect to the accuracy. We also propose a novel and simple approach to estimate a lower confidence bound for the optimal number of samples per level, which helps to prevent overestimating these quantities. The method is in particular designed for application on queue-based computing systems, where it is desirable to compute a large number of samples during one iteration, without overestimating the optimal number of samples. Our theoretical results are verified by numerical experiments for the two-dimensional compressible Navier-Stokes equations. In particular we consider a cavity flow problem from computational acoustics, demonstrating that the method is suitable to handle complex engineering problems.
70 - Kinjal Basu , Art B. Owen 2016
Quasi-Monte Carlo methods are designed for integrands of bounded variation, and this excludes singular integrands. Several methods are known for integrands that become singular on the boundary of the unit cube $[0,1]^d$ or at isolated possibly unknow n points within $[0,1]^d$. Here we consider functions on the square $[0,1]^2$ that may become singular as the point approaches the diagonal line $x_1=x_2$, and we study three quadrature methods. The first method splits the square into two triangles separated by a region around the line of singularity, and applies recently developed triangle QMC rules to the two triangular parts. For functions with a singularity `no worse than $|x_1-x_2|^{-A}$ for $0<A<1$ that method yields an error of $O( (log(n)/n)^{(1-A)/2})$. We also consider methods extending the integrand into a region containing the singularity and show that method will not improve up on using two triangles. Finally, we consider transforming the integrand to have a more QMC-friendly singularity along the boundary of the square. This then leads to error rates of $O(n^{-1+epsilon+A})$ when combined with some corner-avoiding Halton points or with randomized QMC, but it requires some stronger assumptions on the original singular integrand.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا