ﻻ يوجد ملخص باللغة العربية
This paper is devoted to the computation of transmission eigenvalues in the inverse acoustic scattering theory. This problem is first reformulated as a two by two boundary system of boundary integral equations. Next, utilizing the Schur complement technique, we develop a Schur complement operator with regularization to obtain a reduced system of boundary integral equations. The Nystr{o}m discretization is then used to obtain an eigenvalue problem for a matrix. We employ the recursive integral method for the numerical computation of the matrix eigenvalue. Numerical results show that the proposed method is efficient and reduces computational costs.
In this paper, two types of Schur complement based preconditioners are studied for twofold and block tridiagonal saddle point problems. One is based on the nested (or recursive) Schur complement, the other is based on an additive type Schur complemen
Boundary integral numerical methods are among the most accurate methods for interfacial Stokes flow, and are widely applied. They have the advantage that only the boundary of the domain must be discretized, which reduces the number of discretization
The simulation of long, nonlinear dispersive waves in bounded domains usually requires the use of slip-wall boundary conditions. Boussinesq systems appearing in the literature are generally not well-posed when such boundary conditions are imposed, or
We introduce a technique to automatically convert local boundary conditions into nonlocal volume constraints for nonlocal Poissons and peridynamic models. The proposed strategy is based on the approximation of nonlocal Dirichlet or Neumann data with
We study the dependence of the continuity constants for the regularized Poincare and Bogovskiu{i} integral operators acting on differential forms defined on a domain $Omega$ of $mathbb{R}^n$. We, in particular, study the dependence of such constants