ﻻ يوجد ملخص باللغة العربية
We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such solutions of the WDVV equations to the particular case of the so-called algebraic Riccati equation and, in this way, arrive at a complete classification of irreducible solutions.
The known prepotential solutions F to the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation are parametrized by a set {alpha} of covectors. This set may be taken to be indecomposable, since F_{alpha oplus beta}=F_{alpha}+F_{beta}. We couple mutually
We investigate integrability of Euler-Lagrange equations associated with 2D second-order Lagrangians of the form begin{equation*} int f(u_{xx},u_{xy},u_{yy}) dxdy. end{equation*} By deriving integrability conditions for the Lagrangian density $f$, ex
A quadratic line complex is a three-parameter family of lines in projective space P^3 specified by a single quadratic relation in the Plucker coordinates. Fixing a point p in P^3 and taking all lines of the complex passing through p we obtain a quadr
We show that the KdV6 equation recently studied in [1,2] is equivalent to the Rosochatius deformation of KdV equation with self-consistent sources (RD-KdVESCS) recently presented in [9]. The $t$-type bi-Hamiltonian formalism of KdV6 equation (RD-KdVE
We classify integrable Hamiltonian equations in 3D with the Hamiltonian operator d/dx, where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality w such that w_x=u_y. Based on the method of hydrody