ﻻ يوجد ملخص باللغة العربية
We classify integrable Hamiltonian equations in 3D with the Hamiltonian operator d/dx, where the Hamiltonian density h(u, w) is a function of two variables: dependent variable u and the non-locality w such that w_x=u_y. Based on the method of hydrodynamic reductions, the integrability conditions are derived (in the form of an involutive PDE system for the Hamiltonian density h). We show that the generic integrable density is expressed in terms of the Weierstrass elliptic functions. Dispersionless Lax pairs, commuting flows and dispersive deformations of the resulting equations are also discussed.
We classify 2+1 dimensional integrable systems with nonlocality of the intermediate long wave type. Links to the 2+1 dimensional waterbag system are established. Dimensional reductions of integrable systems constructed in this paper provide dispers
We develop a theory of integrable dispersive deformations of 2+1 dimensional Hamiltonian systems of hydrodynamic type following the scheme proposed by Dubrovin and his collaborators in 1+1 dimensions. Our results show that the multi-dimensional situa
We consider evolutionary equations of the form $u_t=F(u, w)$ where $w=D_x^{-1}D_yu$ is the nonlocality, and the right hand side $F$ is polynomial in the derivatives of $u$ and $w$. The recent paper cite{FMN} provides a complete list of integrable thi
We classify integrable third order equations in 2+1 dimensions which generalize the examples of Kadomtsev-Petviashvili, Veselov-Novikov and Harry Dym equations. Our approach is based on the observation that dispersionless limits of integrable systems
We address the problem of classification of integrable differential-difference equations in 2+1 dimensions with one/two discrete variables. Our approach is based on the method of hydrodynamic reductions and its generalisation to dispersive equations.