ترغب بنشر مسار تعليمي؟ اضغط هنا

Linearly degenerate PDEs and quadratic line complexes

102   0   0.0 ( 0 )
 نشر من قبل E. V. Ferapontov
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A quadratic line complex is a three-parameter family of lines in projective space P^3 specified by a single quadratic relation in the Plucker coordinates. Fixing a point p in P^3 and taking all lines of the complex passing through p we obtain a quadratic cone with vertex at p. This family of cones supplies P^3 with a conformal structure. With this conformal structure we associate a three-dimensional second order quasilinear wave equation. We show that any PDE arising in this way is linearly degenerate, furthermore, any linearly degenerate PDE can be obtained by this construction. This provides a classification of linearly degenerate wave equations into eleven types, labelled by Segre symbols of the associated quadratic complexes. We classify Segre types for which the associated conformal structure is conformally flat, as well as Segre types for which the corresponding PDE is integrable.



قيم البحث

اقرأ أيضاً

Based on the classical Plucker correspondence, we present algebraic and geometric properties of discrete integrable line complexes in $CP^3$. Algebraically, these are encoded in a discrete integrable system which appears in various guises in the theo ry of continuous and discrete integrable systems. Geometrically, the existence of these integrable line complexes is shown to be guaranteed by Desargues classical theorem of projective geometry. A remarkable characterisation in terms of correlations of $CP^3$ is also recorded.
We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such sol utions of the WDVV equations to the particular case of the so-called algebraic Riccati equation and, in this way, arrive at a complete classification of irreducible solutions.
Kahan discretization is applicable to any quadratic vector field and produces a birational map which approximates the shift along the phase flow. For a planar quadratic Hamiltonian vector field, this map is known to be integrable and to preserve a pe ncil of cubic curves. Generically, the nine base points of this pencil include three points at infinity (corresponding to the asymptotic directions of cubic curves) and six finite points lying on a conic. We show that the Kahan discretization map can be represented in six different ways as a composition of two Manin involutions, corresponding to an infinite base point and to a finite base point. As a consequence, the finite base points can be ordered so that the resulting hexagon has three pairs of parallel sides which pass through the three base points at infinity. Moreover, this geometric condition on the base points turns out to be characteristic: if it is satisfied, then the cubic curves of the corresponding pencil are invariant under the Kahan discretization of a planar quadratic Hamiltonian vector field.
116 - Takashi Kimura , Xiaobo Liu 2011
In this paper, we give some new genus-3 universal equations for Gromov-Witten invariants of compact symplectic manifolds. These equations were obtained by studying new relations in the tautological ring of the moduli space of 2-pointed genus-3 stable curves. A byproduct of our search for genus-3 equations is a new genus-2 universal equation for Gromov-Witten invariants.
256 - Xiaobo Liu 2011
In this paper, we show that the derivative of the genus-1 Virasoro conjecture for Gromov-Witten invariants along the direction of quantum volume element holds for all smooth projective varieties. This result provides new evidence for the Virasoro conjecture.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا