ﻻ يوجد ملخص باللغة العربية
The known prepotential solutions F to the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation are parametrized by a set {alpha} of covectors. This set may be taken to be indecomposable, since F_{alpha oplus beta}=F_{alpha}+F_{beta}. We couple mutually orthogonal covector sets by adding so-called radial terms to the standard form of F. The resulting reducible covector set yields a new type of irreducible solution to the WDVV equation.
We show that reductions of KP hierarchies related to the loop algebra of $SL_n$ with homogeneous gradation give solutions of the Darboux-Egoroff system of PDEs. Using explicit dressing matrices of the Riemann-Hilbert problem generalized to include a
We define a new class of solutions to the WDVV associativity equations. This class is determined by the property that one of the commuting PDEs associated with such a WDVV solution is linearly degenerate. We reduce the problem of classifying such sol
N=4 superconformal multi-particle quantum mechanics on the real line is governed by two prepotentials, U and F, which obey a system of partial differential equations linear in U and generalizing the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equation
New exact analytical bound-state solutions of the radial Dirac equation in 3+1 dimensions for two sets of couplings and radial potential functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional generali
We present the class of deformations of simple Euclidean superalgebra, which describe the supersymmetrization of some Lie algebraic noncommutativity of D=4 Euclidean space-time. The presented deformations are generated by the supertwists. We provide