ترغب بنشر مسار تعليمي؟ اضغط هنا

One-dimensional edge state transport in a topological Kondo insulator

291   0   0.0 ( 0 )
 نشر من قبل Johnpierre Paglione
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter including various excitations of collective modes predicted in particle physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized $f$-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of $e^2/h$ originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.



قيم البحث

اقرأ أيضاً

Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation -driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics.
Proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a non-magnet ic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by temperature and charge carrier density of graphene.
135 - I. Hagymasi , O. Legeza 2016
We investigate the ground-state of a p-wave Kondo-Heisenberg model introduced by Alexandrov and Coleman with an Ising-type anisotropy in the Kondo interaction and correlated conduction electrons. Our aim is to understand how they affect the stability of the Haldane state obtained in the SU(2) symmetric case without the Hubbard interaction. By applying the density-matrix renormalization group algorithm and calculating the entanglement entropy we show that in the anisotropic case a phase transition occurs and a Neel state emerges above a critical value of the Coulomb interaction. These findings are also corroborated by the examination of the entanglement spectrum and the spin profile of the system which clarify the structure of each phase.
157 - C. H. Wong , R.A. Duine 2012
We investigate topological transport in a spin-orbit coupled bosonic Mott insulator. We show that interactions can lead to anomalous quasi-particle dynamics even when the spin-orbit coupling is abelian. To illustrate the latter, we consider the spin- orbit coupling realized in the experiment of Lin textit{et al}. [Nature (London) textbf{471}, 83 (2011)]. For this spin-orbit coupling, we compute the quasiparticle dispersions and spectral weights, the interaction-induced momentum space Berry curvature, and the momentum space distribution of spin density, and propose experimental signatures. Furthermore, we find that in our approximation for the single-particle propagator, the ground state can in principle support an integer Hall conductivity if the sum of the Chern numbers of the hole bands is nonzero.
Bulk and surface state contributions to the electrical resistance of single-crystal samples of the topological Kondo insulator compound SmB6 are investigated as a function of crystal thickness and surface charge density, the latter tuned by ionic liq uid gating with electrodes patterned in a Corbino disk geometry on a single surface. By separately tuning bulk and surface conduction channels, we show conclusive evidence for a model with an insulating bulk and metallic surface states, with a crossover temperature that depends solely on the relative contributions of each conduction channel. The surface conductance, on the order of 100 e^2/h and electron-like, exhibits a field-effect mobility of 133 cm^2/V/s and a large carrier density of ~2x10^{14}/cm^2, in good agreement with recent photoemission results. With the ability to gate-modulate surface conduction by more than 25%, this approach provides promise for both fundamental and applied studies of gate-tuned devices structured on bulk crystal samples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا