ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable Kondo resonance at a pristine two-dimensional Dirac semimetal on a Kondo insulator

126   0   0.0 ( 0 )
 نشر من قبل Choongyu Hwang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Proximity of two different materials leads to an intricate coupling of quasiparticles so that an unprecedented electronic state is often realized at the interface. Here, we demonstrate a resonance-type many-body ground state in graphene, a non-magnetic two-dimensional Dirac semimetal, when grown on SmB6, a Kondo insulator, via thermal decomposition of fullerene molecules. This ground state is typically observed in three-dimensional magnetic materials with correlated electrons. Above the characteristic Kondo temperature of the substrate, the electron band structure of pristine graphene remains almost intact. As temperature decreases, however, the Dirac fermions of graphene become hybridized with the Sm 4f states. Remarkable enhancement of the hybridization and Kondo resonance is observed with further cooling and increasing charge carrier density of graphene, evidencing the Kondo screening of the Sm 4f local magnetic moment by the conduction electrons of graphene at the interface. These findings manifest the realization of the Kondo effect in graphene by the proximity of SmB6 that is tuned by temperature and charge carrier density of graphene.



قيم البحث

اقرأ أيضاً

The observation of quantum criticality in diverse classes of strongly correlated electron systems has been instrumental in establishing ordering principles, discovering new phases, and identifying the relevant degrees of freedom and interactions. At focus so far have been insulators and metals. Semimetals, which are of great current interest as candidate phases with nontrivial topology, are much less explored in experiments. Here we study the Kondo semimetal CeRu$_4$Sn$_6$ by magnetic susceptibility, specific heat, and inelastic neutron scattering experiments. The power-law divergence of the magnetic Grunesien ratio reveals that, surprisingly, this compound is quantum critical without tuning. The dynamical energy over temperature scaling in the neutron response, seen throughout the Brillouin zone, as well as the temperature dependence of the static uniform susceptibility indicate that temperature is the only energy scale in the criticality. Such behavior, which has been associated with Kondo destruction quantum criticality in metallic systems, may well be generic in the semimetal setting.
Topological insulators, with metallic boundary states protected against time-reversal-invariant perturbations, are a promising avenue for realizing exotic quantum states of matter including various excitations of collective modes predicted in particl e physics, such as Majorana fermions and axions. According to theoretical predictions, a topological insulating state can emerge from not only a weakly interacting system with strong spin-orbit coupling, but also in insulators driven by strong electron correlations. The Kondo insulator compound SmB6 is an ideal candidate for realizing this exotic state of matter, with hybridization between itinerant conduction electrons and localized $f$-electrons driving an insulating gap and metallic surface states at low temperatures. Here we exploit the existence of surface ferromagnetism in SmB6 to investigate the topological nature of metallic surface states by studying magnetotransport properties at very low temperatures. We find evidence of one-dimensional surface transport with a quantized conductance value of $e^2/h$ originating from the chiral edge channels of ferromagnetic domain walls, providing strong evidence that topologically non-trivial surface states exist in SmB6.
109 - L. Isaev , G. Ortiz , 2015
We study Kondo physics of a spin-$frac{1}{2}$ impurity in electronic matter with strong spin-orbit interaction, which can be realized by depositing magnetic adatoms on the surface of a three-dimensional topological insulator. We show that magnetic pr operties of topological surface states and the very existence of Kondo screening strongly depend on details of the bulk material, and specifics of surface preparation encoded in time-reversal preserving boundary conditions for electronic wavefunctions. When this tunable Kondo effect occurs, the impurity spin is screened by purely orbital motion of surface electrons. This mechanism gives rise to a transverse magnetic response of the surface metal, and spin textures that can be used to experimentally probe signatures of a Kondo resonance. Our predictions are particularly relevant for STM measurements in ${rm Pb Te}$-class crystalline topological insulators, but we also discuss implications for other classes of topological materials.
Since its discovery as a Kondo insulator 50 years ago, SmB6 recently received a revival of interest due to detection of unexpected quantum oscillations in the insulating state, discovery of disorder-immune bulk transport, and proposals of correlation -driven topological physics. While recent transport results attribute the anomalous low temperature conduction to two-dimensional surface states, important alternatives, such as conduction channel residing in one-dimensional dislocation lines, have not been adequately explored. Here we study SmB6 with scanning microwave impedance microscopy and uncover evidence for conducting one-dimensional states terminating at surface step edges. These states remain conducting up to room temperature, indicating unusual robustness against scattering and an unconventional origin. Our results bring to light a heretofore undetected conduction route in SmB6 that contributes to the low temperature transport. The unique scenario of intrinsic one-dimensional conducting channels in a highly insulating correlated bulk offers a one-dimensional platform that may host exotic physics.
We consider a spin-1/2 Heisenberg chain coupled via a Kondo interaction to two-dimensional Dirac fermions. The Kondo interaction is irrelevant at the textit{decoupled} fixed-point, leading to the existence of a Kondo-breakdown phase and a Kondo-break down critical point separating such a phase from a heavy Fermi liquid. We reach this conclusion on the basis of a renormalization group analysis, large-N calculations as well as extensive auxiliary-field quantum Monte Carlo simulations. We extract quantities such as the zero-bias tunneling conductance which will be relevant to future experiments involving adatoms on semimetals such as graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا