ترغب بنشر مسار تعليمي؟ اضغط هنا

Calculation of Stochastic Heating and Emissivity of Cosmic Dust Grains with Optimization for the Intel Many Integrated Core Architecture

113   0   0.0 ( 0 )
 نشر من قبل Andrey Vladimirov
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Cosmic dust particles effectively attenuate starlight. Their absorption of starlight produces emission spectra from the near- to far-infrared, which depends on the sizes and properties of the dust grains, and spectrum of the heating radiation field. The near- to mid-infrared is dominated by the emissions by very small grains. Modeling the absorption of starlight by these particles is, however, computationally expensive and a significant bottleneck for self-consistent radiation transport codes treating the heating of dust by stars. In this paper, we summarize the formalism for computing the stochastic emissivity of cosmic dust, which was developed in earlier works, and present a new library HEATCODE implementing this formalism for the calculation for arbitrary grain properties and heating radiation fields. Our library is highly optimized for general-purpose processors with multiple cores and vector instructions, with hierarchical memory cache structure. The HEATCODE library also efficiently runs on co-processor cards implementing the Intel Many Integrated Core (Intel MIC) architecture. We discuss in detail the optimization steps that we took in order to optimize for the Intel MIC architecture, which also significantly benefited the performance of the code on general-purpose processors, and provide code samples and performance benchmarks for each step. The HEATCODE library performance on a single Intel Xeon Phi coprocessor (Intel MIC architecture) is approximately 2 times a general-purpose two-socket multicore processor system with approximately the same nominal power consumption. The library supports heterogeneous calculations employing host processors simultaneously with multiple coprocessors, and can be easily incorporated into existing radiation transport codes.



قيم البحث

اقرأ أيضاً

We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational dema nds of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (> 64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0 kHz with less than 20 {mu}s RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966 Hz, the maximum frame-rate of the camera, with jitter remaining below 20 {mu}s RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.
Background: Short-read aligners have recently gained a lot of speed by exploiting the massive parallelism of GPU. An uprising alternative to GPU is Intel MIC; supercomputers like Tianhe-2, currently top of TOP500, is built with 48,000 MIC boards to o ffer ~55 PFLOPS. The CPU-like architecture of MIC allows CPU-based software to be parallelized easily; however, the performance is often inferior to GPU counterparts as an MIC board contains only ~60 cores (while a GPU board typically has over a thousand cores). Results: To better utilize MIC-enabled computers for NGS data analysis, we developed a new short-read aligner MICA that is optimized in view of MICs limitation and the extra parallelism inside each MIC core. Experiments on aligning 150bp paired-end reads show that MICA using one MIC board is 4.9 times faster than the BWA-MEM (using 6-core of a top-end CPU), and slightly faster than SOAP3-dp (using a GPU). Furthermore, MICAs simplicity allows very efficient scale-up when multiple MIC boards are used in a node (3 cards give a 14.1-fold speedup over BWA-MEM). Summary: MICA can be readily used by MIC-enabled supercomputers for production purpose. We have tested MICA on Tianhe-2 with 90 WGS samples (17.47 Tera-bases), which can be aligned in an hour less than 400 nodes. MICA has impressive performance even though the current MIC is at its initial stage of development (the next generation of MIC has been announced to release in late 2014).
113 - E. M. Xilouris 2005
We use the radiation transfer simulation of Xilouris et al. (1999) to constrain the quantity of dust in three nearby spiral galaxies (NGC 4013, NGC 5907 and NGC 891). The predicted visual optical depth from the model is compared with the thermal cont inuum radiation detected from these galaxies at 850 microns. This comparison yields the emissivity of dust grains in the submillimeter waveband which is a factor 4 higher than the benchmark, semi-empirical model of Draine & Lee (1984). Our estimates are more closely aligned with recent measurements carried out in the laboratory on amorphous carbon and silicate particulates. A comparison between the distribution of 850 microns surface brightness and the intensity levels in the ^{12}CO(1-0) and 21 cm lines underlines the spatial association between dust detected in the submillimeter waveband and molecular gas clouds. We suggest that the relatively high emissivity values that we derive may be attributable to amorphous, fluffy grains situated in denser gas environments.
We present experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3 to 170 degrees. The measured phase functions show two well defined regions i) soft forward peaks and ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions are in agreement with the observed phase functions for the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter sized-grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.
145 - Daniel J. Price 2015
We describe a simple method for simulating the dynamics of small grains in a dusty gas, relevant to micron-sized grains in the interstellar medium and grains of centimetre size and smaller in protoplanetary discs. The method involves solving one extr a diffusion equation for the dust fraction in addition to the usual equations of hydrodynamics. This diffusion approximation for dust is valid when the dust stopping time is smaller than the computational timestep. We present a numerical implementation using Smoothed Particle Hydrodynamics (SPH) that is conservative, accurate and fast. It does not require any implicit timestepping and can be straightforwardly ported into existing 3D codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا