ﻻ يوجد ملخص باللغة العربية
We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational demands of an AO real-time controller (RTC) scale with the fourth power of telescope diameter and so the next generation ELTs require orders of magnitude more processing power for the RTC pipeline than existing systems. The Xeon Phi contains a large number (> 64) of low power x86 CPU cores and high bandwidth memory integrated into a single socketed server CPU package. The increased parallelism and memory bandwidth are crucial to providing the performance for reconstructing wavefronts with the required precision for ELT scale AO. Here, we demonstrate that the Xeon Phi KNL is capable of performing ELT scale single conjugate AO real-time control computation at over 1.0 kHz with less than 20 {mu}s RMS jitter. We have also shown that with a wavefront sensor camera attached the KNL can process the real-time control loop at up to 966 Hz, the maximum frame-rate of the camera, with jitter remaining below 20 {mu}s RMS. Future studies will involve exploring the use of a cluster of Xeon Phis for the real-time control of the MCAO and MOAO regimes of AO. We find that the Xeon Phi is highly suitable for ELT AO real time control.
Cosmic dust particles effectively attenuate starlight. Their absorption of starlight produces emission spectra from the near- to far-infrared, which depends on the sizes and properties of the dust grains, and spectrum of the heating radiation field.
We demonstrate a novel architecture for Adaptive Optics (AO) control based on FPGAs (Field Programmable Gate Arrays), making active use of their configurable parallel processing capability. SPARCs unique capabilities are demonstrated through an imple
The forthcoming Extremely Large Telescopes all require adaptive optics systems for their successful operation. The real-time control for these systems becomes computationally challenging, in part limited by the memory bandwidths required for wavefron
The main objective of the present project is to explore the viability of an adaptive optics control system based exclusively on Field Programmable Gate Arrays (FPGAs), making strong use of their parallel processing capability. In an Adaptive Optics (
We give an overview of QPACE 2, which is a custom-designed supercomputer based on Intel Xeon Phi processors, developed in a collaboration of Regensburg University and Eurotech. We give some general recommendations for how to write high-performance co