ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental phase functions of mm-sized cosmic dust grains

68   0   0.0 ( 0 )
 نشر من قبل Olga Mu\\~noz
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present experimental phase functions of three types of millimeter-sized dust grains consisting of enstatite, quartz and volcanic material from Mount Etna, respectively. The three grains present similar sizes but different absorbing properties. The measurements are performed at 527 nm covering the scattering angle range from 3 to 170 degrees. The measured phase functions show two well defined regions i) soft forward peaks and ii) a continuous increase with the scattering angle at side- and back-scattering regions. This behavior at side- and back-scattering regions are in agreement with the observed phase functions for the Fomalhaut and HR 4796A dust rings. Further computations and measurements (including polarization) for millimeter sized-grains are needed to draw some conclusions about the fluffy or compact structure of the dust grains.

قيم البحث

اقرأ أيضاً

191 - Laurent Pagani 2011
Cold molecular clouds are the birthplaces of stars and planets, where dense cores of gas collapse to form protostars. The dust mixed in these clouds is thought to be made of grains of an average size of 0.1 micrometer. We report the widespread detect ion of the coreshine effect as a direct sign of the existence of grown, micrometer-sized dust grains. This effect is seen in half of the cores we have analyzed in our survey, spanning all Galactic longitudes, and is dominated by changes in the internal properties and local environment of the cores, implying that the coreshine effect can be used to constrain fundamental core properties such as the three-dimensional density structure and ages and also the grain characteristics themselves.
Azimuthally asymmetric dust distributions observed with ALMA in transition disks have been interpreted as dust traps. We present VLA Ka band (34 GHz or 0.9 cm) and ALMA Cycle 2 Band 9 (680 GHz or 0.45 mm) observations at 0.2 resolution of the Oph IRS 48 disk, which suggest that larger particles could be more azimuthally concentrated than smaller dust grains, assuming an axisymmetric temperature field or optically thin 680 GHz emission. Fitting an intensity model to both data demonstrates that the azimuthal extent of the millimeter emission is 2.3 $pm0.9$ times as wide as the centimeter emission, marginally consistent with the particle trapping mechanism under the above assumptions. The 34 GHz continuum image also reveals evidence for ionized gas emission from the star. Both the morphology and the spectral index variations are consistent with an increase of large particles in the center of the trap, but uncertainties remain due to the continuum optical depth at 680 GHz. Particle trapping has been proposed in planet formation models to allow dust particles to grow beyond millimeter sizes in the outer regions of protoplanetary disks. The new observations in the Oph IRS 48 disk provide support for the dust trapping mechanism for centimeter-sized grains, although additional data is required for definitive confirmation.
Grain growth during star formation affects the physical and chemical processes in the evolution of star-forming clouds. We investigate the origin of the millimeter (mm)-sized grains recently observed in Class I protostellar envelopes. We use the coag ulation model developed in our previous paper and find that a hydrogen number density of as high as $10^{10}~{rm cm^{-3}}$, instead of the typical density $10^5~{rm cm^{-3}}$, is necessary for the formation of mm-sized grains. Thus, we test a hypothesis that such large grains are transported to the envelope from the inner, denser parts, finding that gas drag by outflow efficiently launches the large grains as long as the central object has not grown to $gtrsim 0.1$ M$_{odot}$. By investigating the shattering effect on the mm-sized grains, we ensure that the large grains are not significantly fragmented after being injected in the envelope. We conclude that the mm-sized grains observed in the protostellar envelopes are not formed in the envelopes but formed in the inner parts of the star-forming regions and transported to the envelopes before a significant mass growth of the central object, and that they survive in the envelopes.
The work is devoted to the adaptation of the results of laboratory studies of the laser-induced dissociation of molecules of benzene adsorbed on a quartz substrate to the conditions of the interstellar medium. Adsorption was performed under condition s of low temperature and deep vacuum. The difference between the photolysis of adsorbed molecules and molecules in the gas phase is identified. Significance of process of photolytic desorption in the interstellar conditions is analyzed, in particular, in the conditions of photodissociation regions. It is shown that the efficiency and dissociation channels of photolysis of adsorbed and gas phase benzene differ substantially. It is concluded that the photolysis of aromatic hydrocarbons adsorbed on the interstellar dust grains contributes a negligible fraction to the abundance of small hydrocarbons in the interstellar medium.
The experiments presented aim to measure the outcome of collisions between sub-mm sized protoplanetary dust aggregate analogues. We also observed the clusters formed from these aggregates and their collision behaviour. The experiments were performed at the drop tower in Bremen. The protoplanetary dust analogue materials were micrometre-sized monodisperse and polydisperse SiO$_2$ particles prepared into aggregates with sizes between 120~$mu$m and 250~$mu$m. One of the dust samples contained aggregates that were previously compacted through repeated bouncing. During three flights of 9~s of microgravity each, individual collisions between aggregates and the formation of clusters of up to a few millimetres in size were observed. In addition, the collisions of clusters with the experiment cell walls leading to compaction or fragmentation were recorded. We observed collisions amongst dust aggregates and collisions between dust clusters and the cell aluminium walls at speeds ranging from about 0.1 cm/s to 20 cm/s. The velocities at which sticking occurred ranged from 0.18 to 5.0 cm/s for aggregates composed of monodisperse dust, with an average value of 2.1 cm/s for reduced masses ranging from 1.2x10-6 to 1.8x10-3 g with an average value of 2.2x10-4 g. From the restructuring and fragmentation of clusters composed of dust aggregates colliding with the aluminium cell walls, we derived a collision recipe for dust aggregates ($sim$100 $mu$m) following the model of Dominik & Thielens (1997) developed for microscopic particles. We measured a critical rolling energy of 1.8x10-13 J and a critical breaking energy of 3.5x10-13 J for 100 $mu$m-sized non-compacted aggregates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا