ﻻ يوجد ملخص باللغة العربية
Background: Short-read aligners have recently gained a lot of speed by exploiting the massive parallelism of GPU. An uprising alternative to GPU is Intel MIC; supercomputers like Tianhe-2, currently top of TOP500, is built with 48,000 MIC boards to offer ~55 PFLOPS. The CPU-like architecture of MIC allows CPU-based software to be parallelized easily; however, the performance is often inferior to GPU counterparts as an MIC board contains only ~60 cores (while a GPU board typically has over a thousand cores). Results: To better utilize MIC-enabled computers for NGS data analysis, we developed a new short-read aligner MICA that is optimized in view of MICs limitation and the extra parallelism inside each MIC core. Experiments on aligning 150bp paired-end reads show that MICA using one MIC board is 4.9 times faster than the BWA-MEM (using 6-core of a top-end CPU), and slightly faster than SOAP3-dp (using a GPU). Furthermore, MICAs simplicity allows very efficient scale-up when multiple MIC boards are used in a node (3 cards give a 14.1-fold speedup over BWA-MEM). Summary: MICA can be readily used by MIC-enabled supercomputers for production purpose. We have tested MICA on Tianhe-2 with 90 WGS samples (17.47 Tera-bases), which can be aligned in an hour less than 400 nodes. MICA has impressive performance even though the current MIC is at its initial stage of development (the next generation of MIC has been announced to release in late 2014).
We propose a solution to the increased computational demands of Extremely Large Telescope (ELT) scale adaptive optics (AO) real-time control with the Intel Xeon Phi Knights Landing (KNL) Many Integrated Core (MIC) Architecture. The computational dema
Cosmic dust particles effectively attenuate starlight. Their absorption of starlight produces emission spectra from the near- to far-infrared, which depends on the sizes and properties of the dust grains, and spectrum of the heating radiation field.
The drug discovery process currently employed in the pharmaceutical industry typically requires about 10 years and $2-3 billion to deliver one new drug. This is both too expensive and too slow, especially in emergencies like the COVID-19 pandemic. In
The Deep Graph Library (DGL) was designed as a tool to enable structure learning from graphs, by supporting a core abstraction for graphs, including the popular Graph Neural Networks (GNN). DGL contains implementations of all core graph operations fo
Innovations in Next-Generation Sequencing are enabling generation of DNA sequence data at ever faster rates and at very low cost. Large sequencing centers typically employ hundreds of such systems. Such high-throughput and low-cost generation of data