ﻻ يوجد ملخص باللغة العربية
The Banana Bunchy Top Virus (BBTV) is one of the most economically important vector-borne banana diseases throughout the Asia-Pacific Basin and presents a significant challenge to the agricultural sector. Current models of BBTV are largely deterministic, limited by an incomplete understanding of interactions in complex natural systems, and the appropriate identification of parameters. A stochastic network-based Susceptible-Infected model has been created which simulates the spread of BBTV across the subsections of a banana plantation, parameterising nodal recovery, neighbouring and distant infectivity across summer and winter. Findings from posterior results achieved through Markov Chain Monte Carlo approach to approximate Bayesian computation suggest seasonality in all parameters, which are influenced by correlated changes in inspection accuracy, temperatures and aphid activity. This paper demonstrates how the model may be used for monitoring and forecasting of various disease management strategies to support policy-level decision making.
We consider the problem of selecting deterministic or stochastic models for a biological, ecological, or environmental dynamical process. In most cases, one prefers either deterministic or stochastic models as candidate models based on experience or
Reliable mortality estimates at the subnational level are essential in the study of health inequalities within a country. One of the difficulties in producing such estimates is the presence of small populations, where the stochastic variation in deat
We address the problem of modeling constrained hospital resources in the midst of the COVID-19 pandemic in order to inform decision-makers of future demand and assess the societal value of possible interventions. For broad applicability, we focus on
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode
Sensor noise sources cause differences in the signal recorded across pixels in a single image and across multiple images. This paper presents a Bayesian approach to decomposing and characterizing the sensor noise sources involved in imaging with digi