ﻻ يوجد ملخص باللغة العربية
In this paper we propose a multi-task linear classifier learning problem called D-SVM (Dictionary SVM). D-SVM uses a dictionary of parameter covariance shared by all tasks to do multi-task knowledge transfer among different tasks. We formally define the learning problem of D-SVM and show two interpretations of this problem, from both the probabilistic and kernel perspectives. From the probabilistic perspective, we show that our learning formulation is actually a MAP estimation on all optimization variables. We also show its equivalence to a multiple kernel learning problem in which one is trying to find a re-weighting kernel for features from a dictionary of basis (despite the fact that only linear classifiers are learned). Finally, we describe an alternative optimization scheme to minimize the objective function and present empirical studies to valid our algorithm.
Multi-task learning is an important trend of machine learning in facing the era of artificial intelligence and big data. Despite a large amount of researches on learning rate estimates of various single-task machine learning algorithms, there is litt
Federated multi-task learning (FMTL) has emerged as a natural choice to capture the statistical diversity among the clients in federated learning. To unleash the potential of FMTL beyond statistical diversity, we formulate a new FMTL problem FedU usi
The dynamic ensemble selection of classifiers is an effective approach for processing label-imbalanced data classifications. However, such a technique is prone to overfitting, owing to the lack of regularization methods and the dependence of the afor
A recent technique of randomized smoothing has shown that the worst-case (adversarial) $ell_2$-robustness can be transformed into the average-case Gaussian-robustness by smoothing a classifier, i.e., by considering the averaged prediction over Gaussi
Multi-task learning (MTL) is a common paradigm that seeks to improve the generalization performance of task learning by training related tasks simultaneously. However, it is still a challenging problem to search the flexible and accurate architecture