ترغب بنشر مسار تعليمي؟ اضغط هنا

FedU: A Unified Framework for Federated Multi-Task Learning with Laplacian Regularization

178   0   0.0 ( 0 )
 نشر من قبل The Canh Dinh
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Federated multi-task learning (FMTL) has emerged as a natural choice to capture the statistical diversity among the clients in federated learning. To unleash the potential of FMTL beyond statistical diversity, we formulate a new FMTL problem FedU using Laplacian regularization, which can explicitly leverage relationships among the clients for multi-task learning. We first show that FedU provides a unified framework covering a wide range of problems such as conventional federated learning, personalized federated learning, few-shot learning, and stratified model learning. We then propose algorithms including both communication-centralized and decentralized schemes to learn optimal models of FedU. Theoretically, we show that the convergence rates of both FedUs algorithms achieve linear speedup for strongly convex and sublinear speedup of order $1/2$ for nonconvex objectives. While the analysis of FedU is applicable to both strongly convex and nonconvex loss functions, the conventional FMTL algorithm MOCHA, which is based on CoCoA framework, is only applicable to convex case. Experimentally, we verify that FedU outperforms the vanilla FedAvg, MOCHA, as well as pFedMe and Per-FedAvg in personalized federated learning.

قيم البحث

اقرأ أيضاً

The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security ma kes each IoT device an isolated island of data. Further, the limited computation and communication capacity of wearable healthcare devices restrict the application of vanilla federated learning. To this end, we propose an advanced federated learning framework to train deep neural networks, where the network is partitioned and allocated to IoT devices and a centralized server. Then most of the training computation is handled by the powerful server. The sparsification of activations and gradients significantly reduces the communication overhead. Empirical study have suggested that the proposed framework guarantees a low accuracy loss, while only requiring 0.2% of the synchronization traffic in vanilla federated learning.
We consider a general class of nonconvex-PL minimax problems in the cross-device federated learning setting. Although nonconvex-PL minimax problems have received a lot of interest in recent years, existing algorithms do not apply to the cross-device federated learning setting which is substantially different from conventional distributed settings and poses new challenges. To bridge this gap, we propose an algorithmic framework named FedSGDA. FedSGDA performs multiple local update steps on a subset of active clients in each round and leverages global gradient estimates to correct the bias in local update directions. By incorporating FedSGDA with two representative global gradient estimators, we obtain two specific algorithms. We establish convergence rates of the proposed algorithms by using novel potential functions. Experimental results on synthetic and real data corroborate our theory and demonstrate the effectiveness of our algorithms.
86 - Jie Gui , Haizhang Zhang 2021
Multi-task learning is an important trend of machine learning in facing the era of artificial intelligence and big data. Despite a large amount of researches on learning rate estimates of various single-task machine learning algorithms, there is litt le parallel work for multi-task learning. We present mathematical analysis on the learning rate estimate of multi-task learning based on the theory of vector-valued reproducing kernel Hilbert spaces and matrix-valued reproducing kernels. For the typical multi-task regularization networks, an explicit learning rate dependent both on the number of sample data and the number of tasks is obtained. It reveals that the generalization ability of multi-task learning algorithms is indeed affected as the number of tasks increases.
382 - Yu Zhang , Moming Duan , Duo Liu 2021
Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. Th e advantages of synchronous FL are that the model has high precision and fast convergence speed. However, this synchronous communication strategy has the risk that the central server waits too long for the devices, namely, the straggler effect which has a negative impact on some time-critical applications. Asynchronous FL has a natural advantage in mitigating the straggler effect, but there are threats of model quality degradation and server crash. Therefore, we combine the advantages of these two strategies to propose a clustered semi-asynchronous federated learning (CSAFL) framework. We evaluate CSAFL based on four imbalanced federated datasets in a non-IID setting and compare CSAFL to the baseline methods. The experimental results show that CSAFL significantly improves test accuracy by more than +5% on the four datasets compared to TA-FedAvg. In particular, CSAFL improves absolute test accuracy by +34.4% on non-IID FEMNIST compared to TA-FedAvg.
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning ( OpenFL https://github.com/intel/openfl) is an open-source framework for training ML algorithms using the data-private collaborative learning paradigm of FL. OpenFL works with training pipelines built with both TensorFlow and PyTorch, and can be easily extended to other ML and deep learning frameworks. Here, we summarize the motivation and development characteristics of OpenFL, with the intention of facilitating its application to existing ML model training in a production environment. Finally, we describe the first use of the OpenFL framework to train consensus ML models in a consortium of international healthcare organizations, as well as how it facilitates the first computational competition on FL.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا