ﻻ يوجد ملخص باللغة العربية
Federated multi-task learning (FMTL) has emerged as a natural choice to capture the statistical diversity among the clients in federated learning. To unleash the potential of FMTL beyond statistical diversity, we formulate a new FMTL problem FedU using Laplacian regularization, which can explicitly leverage relationships among the clients for multi-task learning. We first show that FedU provides a unified framework covering a wide range of problems such as conventional federated learning, personalized federated learning, few-shot learning, and stratified model learning. We then propose algorithms including both communication-centralized and decentralized schemes to learn optimal models of FedU. Theoretically, we show that the convergence rates of both FedUs algorithms achieve linear speedup for strongly convex and sublinear speedup of order $1/2$ for nonconvex objectives. While the analysis of FedU is applicable to both strongly convex and nonconvex loss functions, the conventional FMTL algorithm MOCHA, which is based on CoCoA framework, is only applicable to convex case. Experimentally, we verify that FedU outperforms the vanilla FedAvg, MOCHA, as well as pFedMe and Per-FedAvg in personalized federated learning.
The Internet of Things (IoT) revolution has shown potential to give rise to many medical applications with access to large volumes of healthcare data collected by IoT devices. However, the increasing demand for healthcare data privacy and security ma
We consider a general class of nonconvex-PL minimax problems in the cross-device federated learning setting. Although nonconvex-PL minimax problems have received a lot of interest in recent years, existing algorithms do not apply to the cross-device
Multi-task learning is an important trend of machine learning in facing the era of artificial intelligence and big data. Despite a large amount of researches on learning rate estimates of various single-task machine learning algorithms, there is litt
Federated learning (FL) is an emerging distributed machine learning paradigm that protects privacy and tackles the problem of isolated data islands. At present, there are two main communication strategies of FL: synchronous FL and asynchronous FL. Th
Federated learning (FL) is a computational paradigm that enables organizations to collaborate on machine learning (ML) projects without sharing sensitive data, such as, patient records, financial data, or classified secrets. Open Federated Learning (