ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonthermal excitonic condensation near a spin-state transition

83   0   0.0 ( 0 )
 نشر من قبل Philipp Werner
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider a two-orbital Hubbard model with Hund coupling and crystal-field splitting and show that in the vicinity of the high-spin/low-spin transition, crystal-field quenches can induce an excitonic condensation at initial temperatures above the highest ordering temperature in equilibrium. This condensation is the effect of an increase in the spin entropy and an associated cooling of the effective electronic temperature. We identify a dynamical phase transition and show that such quenches can result in long-lived nonthermal excitonic condensates which have no analogue in the equilibrium phase diagram. The results are interpreted by means of an effective pseudo-spin model.

قيم البحث

اقرأ أيضاً

172 - K. Tomiyasu , N. Ito , R. Okazaki 2017
Spin-state transition, also known as spin crossover, plays a key role in diverse systems, including minerals and biological materials. In theory, the boundary range between the low- and high-spin states is expected to enrich the transition and give r ise to unusual physical states. However, no compound that realizes a nearly degenerate critical range as the ground state without requiring special external conditions has yet been experimentally identified. This study reports that, by comprehensive measurements of macroscopic physical properties, X-ray diffractometry, and neutron spectroscopy, the Sc substitution in LaCoO$_3$ destabilizes its nonmagnetic low-spin state and generates an anomalous paramagnetic state accompanied by the enhancement of transport gap and magneto-lattice-expansion as well as the contraction of Co--O distance with the increase of electron site-transfer. These phenomena are not well described by the mixture of conventional low- and high-spin states, but by their quantum superposition occurring on the verge of a spin-state transition. The present study enables us to significantly accelerate the design of new advanced materials without requiring special equipment based on the concept of quantum spin-state criticality.
420 - J. Kunes , P. Augustinsky 2013
Using linear response theory with the dynamical mean-field approximation we investigate the particle-hole instabilities of the two-band Hubbard model in the vicinity of the spin-state transition. Besides the previously reported high-spin--low-spin or der we find an instability towards triplet excitonic condensate. We discuss the strong and weak coupling limits of the model, in particular, a connection to the spinful hard-core bosons with a nearest-neighbor interaction. Possible realization in LaCoO3 at intermediate temperatures is briefly discussed.
We study the orbital diamagnetic susceptibility in excitonic condensation phase using the meanfield approximation for a two-band model defined on a square lattice. We find that, in semiconductors, the excitonic condensation acquires a finite diamagne tic susceptibility due to spontaneous hybridization between the valence and the conduction bands, whereas in semimetals, the diamagnetic susceptibility in the normal phase is suppressed by the excitonic condensation. We also study the orbital diamagnetic and Pauli paramagnetic susceptibilities of Ta2NiSe5 using a two-dimensional three-band model and find that the calculated temperature dependence of the magnetic susceptibility is in qualitative agreement with experiment.
178 - Jan Kunes 2015
The idea of exciton condensation in solids was introduced in 1960s with the analogy to superconductivity in mind. While exciton supercurrents have been realized only in artificial quantum-well structures so far, the application of the concept of exci tonic condensation to bulk solids leads to a rich spectrum of thermodynamic phases with diverse physical properties. In this review we discuss recent developments in the theory of exciton condensation in systems described by Hubbard-type models. In particular, we focus on the connections to their various strong-coupling limits that have been studied in other contexts, e.g., cold atoms physics. One of our goals is to provide a dictionary which would allow the reader to efficiently combine results obtained in these different fields.
136 - K. Seki , Y. Wakisaka , T. Kaneko 2014
We show that finite temperature variational cluster approximation (VCA) calculations on an extended Falicov-Kimball model can reproduce angle-resolved photoemission spectroscopy (ARPES) results on Ta2NiSe5 across a semiconductor-to-semiconductor stru ctural phase transition at 325 K. We demonstrate that the characteristic temperature dependence of the flat-top valence band observed by ARPES is reproduced by the VCA calculation on the realistic model for an excitonic insulator only when the strong excitonic fluctuation is taken into account. The present calculations indicate that Ta2NiSe5 falls in the Bose-Einstein condensation regime of the excitonic insulator state.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا