ﻻ يوجد ملخص باللغة العربية
Photoinduced dynamics in an excitonic insulator is studied theoretically by using a two-orbital Hubbard model on the square lattice where the excitonic phase in the ground state is characterized by the BCS-BEC crossover as a function of the interorbital Coulomb interaction. We consider the case where the order has a wave vector $Q=(0,0)$ and photoexcitation is introduced by a dipole transition. Within the mean-field approximation, we show that the excitonic order can be enhanced by the photoexcitation when the system is initially in the BEC regime of the excitonic phase, whereas it is reduced if the system is initially in the BCS regime. The origin of this difference is discussed from behaviors of momentum distribution functions and momentum-dependent excitonic pair condensation. In particular, we show that the phases of the excitonic pair condensation have an important role in determining whether the excitonic order is enhanced or not.
We investigate the condition for the photoinduced enhancement of an excitonic order in a two-orbital Hubbard model, which has been theoretically proposed in our previous work [Phys. Rev. B 97, 115105 (2018)], and analyze it from the viewpoint of the
In strongly correlated multi-orbital systems, various ordered phases appear. In particular, the orbital order in iron-based superconductors attracts much attention since it is considered to be the origin of the nematic state. In order to clarify the
We investigate the real-time dynamics of the half-filled one-dimensional extended Hubbard model in the strong-coupling regime, when driven by a transient laser pulse. Starting from a wide regime displaying a charge-density wave in equilibrium, a robu
We study photoinduced ultrafast coherent oscillations originating from orbital degrees of freedom in the one-dimensional two-orbital Hubbard model. By solving the time-dependent Schrodinger equation for the numerically exact many-electron wave functi
By employing unbiased numerical methods, we show that pulse irradiation can induce unconventional superconductivity even in the Mott insulator of the Hubbard model. The superconductivity found here in the photoexcited state is due to the $eta$-pairin