ترغب بنشر مسار تعليمي؟ اضغط هنا

Recognizing Speech in a Novel Accent: The Motor Theory of Speech Perception Reframed

48   0   0.0 ( 0 )
 نشر من قبل Clement Moulin-Frier
 تاريخ النشر 2013
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The motor theory of speech perception holds that we perceive the speech of another in terms of a motor representation of that speech. However, when we have learned to recognize a foreign accent, it seems plausible that recognition of a word rarely involves reconstruction of the speech gestures of the speaker rather than the listener. To better assess the motor theory and this observation, we proceed in three stages. Part 1 places the motor theory of speech perception in a larger framework based on our earlier models of the adaptive formation of mirror neurons for grasping, and for viewing extensions of that mirror system as part of a larger system for neuro-linguistic processing, augmented by the present consideration of recognizing speech in a novel accent. Part 2 then offers a novel computational model of how a listener comes to understand the speech of someone speaking the listeners native language with a foreign accent. The core tenet of the model is that the listener uses hypotheses about the word the speaker is currently uttering to update probabilities linking the sound produced by the speaker to phonemes in the native language repertoire of the listener. This, on average, improves the recognition of later words. This model is neutral regarding the nature of the representations it uses (motor vs. auditory). It serve as a reference point for the discussion in Part 3, which proposes a dual-stream neuro-linguistic architecture to revisits claims for and against the motor theory of speech perception and the relevance of mirror neurons, and extracts some implications for the reframing of the motor theory.

قيم البحث

اقرأ أيضاً

The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influenc e of the speakers native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network-based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4 percent on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.
The performance of automatic speech recognition systems degrades with increasing mismatch between the training and testing scenarios. Differences in speaker accents are a significant source of such mismatch. The traditional approach to deal with mult iple accents involves pooling data from several accents during training and building a single model in multi-task fashion, where tasks correspond to individual accents. In this paper, we explore an alternate model where we jointly learn an accent classifier and a multi-task acoustic model. Experiments on the American English Wall Street Journal and British English Cambridge corpora demonstrate that our joint model outperforms the strong multi-task acoustic model baseline. We obtain a 5.94% relative improvement in word error rate on British English, and 9.47% relative improvement on American English. This illustrates that jointly modeling with accent information improves acoustic model performance.
We present an attention-based sequence-to-sequence neural network which can directly translate speech from one language into speech in another language, without relying on an intermediate text representation. The network is trained end-to-end, learni ng to map speech spectrograms into target spectrograms in another language, corresponding to the translated content (in a different canonical voice). We further demonstrate the ability to synthesize translated speech using the voice of the source speaker. We conduct experiments on two Spanish-to-English speech translation datasets, and find that the proposed model slightly underperforms a baseline cascade of a direct speech-to-text translation model and a text-to-speech synthesis model, demonstrating the feasibility of the approach on this very challenging task.
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. Previous work addresses the problem by training an attention-based s equence-to-sequence model that maps source speech spectrograms into target spectrograms. To tackle the challenge of modeling continuous spectrogram features of the target speech, we propose to predict the self-supervised discrete representations learned from an unlabeled speech corpus instead. When target text transcripts are available, we design a multitask learning framework with joint speech and text training that enables the model to generate dual mode output (speech and text) simultaneously in the same inference pass. Experiments on the Fisher Spanish-English dataset show that predicting discrete units and joint speech and text training improve model performance by 11 BLEU compared with a baseline that predicts spectrograms and bridges 83% of the performance gap towards a cascaded system. When trained without any text transcripts, our model achieves similar performance as a baseline that predicts spectrograms and is trained with text data.
We present a state-of-the-art speech recognition system developed using end-to-end deep learning. Our architecture is significantly simpler than traditional speech systems, which rely on laboriously engineered processing pipelines; these traditional systems also tend to perform poorly when used in noisy environments. In contrast, our system does not need hand-designed components to model background noise, reverberation, or speaker variation, but instead directly learns a function that is robust to such effects. We do not need a phoneme dictionary, nor even the concept of a phoneme. Key to our approach is a well-optimized RNN training system that uses multiple GPUs, as well as a set of novel data synthesis techniques that allow us to efficiently obtain a large amount of varied data for training. Our system, called Deep Speech, outperforms previously published results on the widely studied Switchboard Hub500, achieving 16.0% error on the full test set. Deep Speech also handles challenging noisy environments better than widely used, state-of-the-art commercial speech systems.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا