ﻻ يوجد ملخص باللغة العربية
We present an attention-based sequence-to-sequence neural network which can directly translate speech from one language into speech in another language, without relying on an intermediate text representation. The network is trained end-to-end, learning to map speech spectrograms into target spectrograms in another language, corresponding to the translated content (in a different canonical voice). We further demonstrate the ability to synthesize translated speech using the voice of the source speaker. We conduct experiments on two Spanish-to-English speech translation datasets, and find that the proposed model slightly underperforms a baseline cascade of a direct speech-to-text translation model and a text-to-speech synthesis model, demonstrating the feasibility of the approach on this very challenging task.
We present a direct speech-to-speech translation (S2ST) model that translates speech from one language to speech in another language without relying on intermediate text generation. Previous work addresses the problem by training an attention-based s
Sequence-to-sequence (seq2seq) approach for low-resource ASR is a relatively new direction in speech research. The approach benefits by performing model training without using lexicon and alignments. However, this poses a new problem of requiring mor
Recently sequence-to-sequence models have started to achieve state-of-the-art performance on standard speech recognition tasks when processing audio data in batch mode, i.e., the complete audio data is available when starting processing. However, whe
Motivated by the attention mechanism of the human visual system and recent developments in the field of machine translation, we introduce our attention-based and recurrent sequence to sequence autoencoders for fully unsupervised representation learni
Encoder-decoder models provide a generic architecture for sequence-to-sequence tasks such as speech recognition and translation. While offline systems are often evaluated on quality metrics like word error rates (WER) and BLEU, latency is also a cruc