ترغب بنشر مسار تعليمي؟ اضغط هنا

Leveraging Native Language Speech for Accent Identification using Deep Siamese Networks

208   0   0.0 ( 0 )
 نشر من قبل Aditya Siddhant
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The problem of automatic accent identification is important for several applications like speaker profiling and recognition as well as for improving speech recognition systems. The accented nature of speech can be primarily attributed to the influence of the speakers native language on the given speech recording. In this paper, we propose a novel accent identification system whose training exploits speech in native languages along with the accented speech. Specifically, we develop a deep Siamese network-based model which learns the association between accented speech recordings and the native language speech recordings. The Siamese networks are trained with i-vector features extracted from the speech recordings using either an unsupervised Gaussian mixture model (GMM) or a supervised deep neural network (DNN) model. We perform several accent identification experiments using the CSLU Foreign Accented English (FAE) corpus. In these experiments, our proposed approach using deep Siamese networks yield significant relative performance improvements of 15.4 percent on a 10-class accent identification task, over a baseline DNN-based classification system that uses GMM i-vectors. Furthermore, we present a detailed error analysis of the proposed accent identification system.



قيم البحث

اقرأ أيضاً

Although there are more than 6,500 languages in the world, the pronunciations of many phonemes sound similar across the languages. When people learn a foreign language, their pronunciation often reflects their native languages characteristics. This m otivates us to investigate how the speech synthesis network learns the pronunciation from datasets from different languages. In this study, we are interested in analyzing and taking advantage of multilingual speech synthesis network. First, we train the speech synthesis network bilingually in English and Korean and analyze how the network learns the relations of phoneme pronunciation between the languages. Our experimental result shows that the learned phoneme embedding vectors are located closer if their pronunciations are similar across the languages. Consequently, the trained networks can synthesize the English speakers Korean speech and vice versa. Using this result, we propose a training framework to utilize information from a different language. To be specific, we pre-train a speech synthesis network using datasets from both high-resource language and low-resource language, then we fine-tune the network using the low-resource language dataset. Finally, we conducted more simulations on 10 different languages to show it is generally extendable to other languages.
Recently, end-to-end sequence-to-sequence models for speech recognition have gained significant interest in the research community. While previous architecture choices revolve around time-delay neural networks (TDNN) and long short-term memory (LSTM) recurrent neural networks, we propose to use self-attention via the Transformer architecture as an alternative. Our analysis shows that deep Transformer networks with high learning capacity are able to exceed performance from previous end-to-end approaches and even match the conventional hybrid systems. Moreover, we trained very deep models with up to 48 Transformer layers for both encoder and decoders combined with stochastic residual connections, which greatly improve generalizability and training efficiency. The resulting models outperform all previous end-to-end ASR approaches on the Switchboard benchmark. An ensemble of these models achieve 9.9% and 17.7% WER on Switchboard and CallHome test sets respectively. This finding brings our end-to-end models to competitive levels with previous hybrid systems. Further, with model ensembling the Transformers can outperform certain hybrid systems, which are more complicated in terms of both structure and training procedure.
Recent studies have investigated siamese network architectures for learning invariant speech representations using same-different side information at the word level. Here we investigate systematically an often ignored component of siamese networks: t he sampling procedure (how pairs of same vs. different tokens are selected). We show that sampling strategies taking into account Zipfs Law, the distribution of speakers and the proportions of same and different pairs of words significantly impact the performance of the network. In particular, we show that word frequency compression improves learning across a large range of variations in number of training pairs. This effect does not apply to the same extent to the fully unsupervised setting, where the pairs of same-different words are obtained by spoken term discovery. We apply these results to pairs of words discovered using an unsupervised algorithm and show an improvement on state-of-the-art in unsupervised representation learning using siamese networks.
158 - Chakaveh Saedi , Mark Dras 2019
Authorship attribution is the process of identifying the author of a text. Approaches to tackling it have been conventionally divided into classification-based ones, which work well for small numbers of candidate authors, and similarity-based methods , which are applicable for larger numbers of authors or for authors beyond the training set; these existing similarity-based methods have only embodied static notions of similarity. Deep learning methods, which blur the boundaries between classification-based and similarity-based approaches, are promising in terms of ability to learn a notion of similarity, but have previously only been used in a conventional small-closed-class classification setup. Siamese networks have been used to develop learned notions of similarity in one-shot image tasks, and also for tasks of mostly semantic relatedness in NLP. We examine their application to the stylistic task of authorship attribution on datasets with large numbers of authors, looking at multiple energy functions and neural network architectures, and show that they can substantially outperform previous approaches.
For our submission to the ZeroSpeech 2019 challenge, we apply discrete latent-variable neural networks to unlabelled speech and use the discovered units for speech synthesis. Unsupervised discrete subword modelling could be useful for studies of phon etic category learning in infants or in low-resource speech technology requiring symbolic input. We use an autoencoder (AE) architecture with intermediate discretisation. We decouple acoustic unit discovery from speaker modelling by conditioning the AEs decoder on the training speaker identity. At test time, unit discovery is performed on speech from an unseen speaker, followed by unit decoding conditioned on a known target speaker to obtain reconstructed filterbanks. This output is fed to a neural vocoder to synthesise speech in the target speakers voice. For discretisation, categorical variational autoencoders (CatVAEs), vector-quantised VAEs (VQ-VAEs) and straight-through estimation are compared at different compression levels on two languages. Our final model uses convolutional encoding, VQ-VAE discretisation, deconvolutional decoding and an FFTNet vocoder. We show that decoupled speaker conditioning intrinsically improves discrete acoustic representations, yielding competitive synthesis quality compared to the challenge baseline.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا