ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic properties of Gd3+ ions in the spatially distributed DNA molecules

54   0   0.0 ( 0 )
 نشر من قبل Valentin Irkhin
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Magnetic properties of DNA liquid-crystal dispersions are experimentally investigated by SQUID magnetometer. The magnetic susceptibility of pure DNA and DNA doped by La, and Gd is measured in the region 4.2-300 K. The total magnetic moment is represented as a sum of: the paramagnetic part and negative diamagnetic part. The number of paramagnetic Gd3+ ions is calculated in a good agreement with the number of phosphate complexes. The temperature dependence of magnetic susceptibility indicates the presence of interaction between Gd3+ magnetic moments, which is discussed in terms of long-range RKKY-type exchange in one-dimensional metals.



قيم البحث

اقرأ أيضاً

122 - E.Allahyarov , G.Gompper , H.Lowen 2003
The effective force between two parallel DNA molecules is calculated as a function of their mutual separation for different valencies of counter- and salt ions and different salt concentrations. Computer simulations of the primitive model are used an d the shape of the DNA molecules is accurately modelled using different geometrical shapes. We find that multivalent ions induce a significant attraction between the DNA molecules whose strength can be tuned by the averaged valency of the ions. The physical origin of the attraction is traced back either to electrostatics or to entropic contributions. For multivalent counter- and monovalent salt ions, we find a salt-induced stabilization effect: the force is first attractive but gets repulsive for increasing salt concentration. Furthermore, we show that the multivalent-ion-induced attraction does not necessarily correlate with DNA overcharging.
We study the controlled introduction of defects in GaMnAs by irradiating the samples with energetic ion beams, which modify the magnetic properties of the DMS. Our study focuses on the low-carrier-density regime, starting with as-grown GaMnAs films a nd decreasing even further the number of carriers, through a sequence of irradiation doses. We did a systematic study of magnetization as a function of temperature and of the irradiation ion dose. We also performed in-situ room temperature resistivity measurements as a function of the ion dose. We observe that both magnetic and transport properties of the samples can be experimentally manipulated by controlling the ion-beam parameters. For highly irradiated samples, the magnetic measurements indicate the formation of magnetic clusters together with a transition to an insulating state. The experimental data are compared with mean-field calculations for magnetization. The independent control of disorder and carrier density in the calculations allows further insight on the individual role of this two factors in the ion-beam-induced modification of GaMnAs.
177 - I. Paga , Q. Zhai , M. Baity-Jesi 2021
The synergy between experiment, theory, and simulations enables a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity of and below the spin-glass transition temperature $T_mathrm{g}$. The spin-glass correlation length, $xi (t,t_mathrm{w};T)$, is analysed both in experiments and in simulations in terms of the waiting time $t_mathrm{w}$ after the spin glass has been cooled down to a stabilised measuring temperature $T<T_mathrm{g}$ and of the time $t$ after the magnetic field is changed. This correlation length is extracted experimentally for a CuMn 6 at. % single crystal, as well as for simulations on the Janus II special-purpose supercomputer, the latter with time and length scales comparable to experiment. The non-linear magnetic susceptibility is reported from experiment and simulations, using $xi(t,t_mathrm{w};T)$ as the scaling variable. Previous experiments are reanalysed, and disagreements about the nature of the Zeeman energy are resolved. The growth of the spin-glass magnetisation in zero-field magnetisation experiments, $M_mathrm{ZFC}(t,t_mathrm{w};T)$, is measured from simulations, verifying the scaling relationships in the dynamical or non-equilibrium regime. Our preliminary search for the de Almeida-Thouless line in $D=3$ is discussed.
96 - H. Wang , R. Marsh , J.P. Lewis 2005
The question of whether DNA conducts electric charges is intriguing to physicists and biologists alike. The suggestion that electron transfer/transport in DNA might be biologically important has triggered a series of experimental and theoretical inve stigations. Here, we review recent theoretical progress by concentrating on quantum-chemical, molecular dynamics-based approaches to short DNA strands and physics-motivated tight-binding transport studies of long or even complete DNA sequences. In both cases, we observe small, but significant differences between specific DNA sequences such as periodic repetitions and aperiodic sequences of AT bases, lambda-DNA, centromeric DNA, promoter sequences as well as random-ATGC DNA.
The dynamical response of Coulomb-interacting particles in nano-clusters are analyzed at different temperatures characterizing their solid- and liquid-like behavior. Depending on the trap-symmetry, both the spatial and temporal correlations undergo s low, stretched exponential relaxations at long times, arising from spatially correlated motion in string-like paths. Our results indicate that the distinction between the `solid and `liquid is soft: While particles in a `solid flow producing dynamic heterogeneities, motion in `liquid yields unusually long tail in the distribution of particle-displacements. A phenomenological model captures much of the subtleties of our numerical simulations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا