ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic transport and localization in short and long DNA

97   0   0.0 ( 0 )
 نشر من قبل Rudolf A. Roemer
 تاريخ النشر 2005
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The question of whether DNA conducts electric charges is intriguing to physicists and biologists alike. The suggestion that electron transfer/transport in DNA might be biologically important has triggered a series of experimental and theoretical investigations. Here, we review recent theoretical progress by concentrating on quantum-chemical, molecular dynamics-based approaches to short DNA strands and physics-motivated tight-binding transport studies of long or even complete DNA sequences. In both cases, we observe small, but significant differences between specific DNA sequences such as periodic repetitions and aperiodic sequences of AT bases, lambda-DNA, centromeric DNA, promoter sequences as well as random-ATGC DNA.



قيم البحث

اقرأ أيضاً

We study electronic transport in long DNA chains using the tight-binding approach for a ladder-like model of DNA. We find insulating behavior with localizaton lengths xi ~ 25 in units of average base-pair seperation. Furthermore, we observe small, bu t significant differences between lambda-DNA, centromeric DNA, promoter sequences as well as random-ATGC DNA.
Charge migration along DNA molecules has attracted scientific interest for over half a century. Reports on possible high rates of charge transfer between donor and acceptor through the DNA, obtained in the last decade from solution chemistry experime nts on large numbers of molecules, triggered a series of direct electrical transport measurements through DNA single molecules, bundles and networks. These measurements are reviewed and presented here. From these experiments we conclude that electrical transport is feasible in short DNA molecules, in bundles and networks, but blocked in long single molecules that are attached to surfaces. The experimental background is complemented by an account of the theoretical/computational schemes that are applied to study the electronic and transport properties of DNA-based nanowires. Examples of selected applications are given, to show the capabilities and limits of current theoretical approaches to accurately describe the wires, interpret the transport measurements, and predict suitable strategies to enhance the conductivity of DNA nanostructures.
146 - DinhDuy Vu , Ke Huang , Xiao Li 2021
We study many-body localization (MBL) for interacting one-dimensional lattice fermions in random (Anderson) and quasiperiodic (Aubry-Andre) models, focusing on the role of interaction range. We obtain the MBL quantum phase diagrams by calculating the experimentally relevant inverse participation ratio (IPR) at half-filling using exact diagonalization methods and extrapolating to {the infinite system size}. For short-range interactions, our results produce in the phase diagram a qualitative symmetry between weak and strong interaction limits. For long-range interactions, no such symmetry exists as the strongly interacting system is always many-body localized, independent of the effective disorder strength, and the system is analogous to a pinned Wigner crystal. We obtain various scaling exponents for the IPR, suggesting conditions for different MBL regimes arising from interaction effects.
We investigate the transition induced by disorder in a periodically-driven one-dimensional model displaying quantized topological transport. We show that, while instantaneous eigenstates are necessarily Anderson localized, the periodic driving plays a fundamental role in delocalizing Floquet states over the whole system, henceforth allowing for a steady state nearly-quantized current. Remarkably, this is linked to a localization/delocalization transition in the Floquet states of a one dimensional driven Anderson insulator, which occurs for periodic driving corresponding to a nontrivial loop in the parameter space. As a consequence, the Floquet spectrum becomes continuous in the delocalized phase, in contrast with a pure-point instantaneous spectrum.
126 - Marie Piraud 2011
We study quantum transport in anisotropic 3D disorder and show that non rotation invariant correlations can induce rich diffusion and localization properties. For instance, structured finite-range correlations can lead to the inversion of the transpo rt anisotropy. Moreover, working beyond the self-consistent theory of localization, we include the disorder-induced shift of the energy states and show that it strongly affects the mobility edge. Implications to recent experiments are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا