ﻻ يوجد ملخص باللغة العربية
The synergy between experiment, theory, and simulations enables a microscopic analysis of spin-glass dynamics in a magnetic field in the vicinity of and below the spin-glass transition temperature $T_mathrm{g}$. The spin-glass correlation length, $xi(t,t_mathrm{w};T)$, is analysed both in experiments and in simulations in terms of the waiting time $t_mathrm{w}$ after the spin glass has been cooled down to a stabilised measuring temperature $T<T_mathrm{g}$ and of the time $t$ after the magnetic field is changed. This correlation length is extracted experimentally for a CuMn 6 at. % single crystal, as well as for simulations on the Janus II special-purpose supercomputer, the latter with time and length scales comparable to experiment. The non-linear magnetic susceptibility is reported from experiment and simulations, using $xi(t,t_mathrm{w};T)$ as the scaling variable. Previous experiments are reanalysed, and disagreements about the nature of the Zeeman energy are resolved. The growth of the spin-glass magnetisation in zero-field magnetisation experiments, $M_mathrm{ZFC}(t,t_mathrm{w};T)$, is measured from simulations, verifying the scaling relationships in the dynamical or non-equilibrium regime. Our preliminary search for the de Almeida-Thouless line in $D=3$ is discussed.
The stability of spin-glass (SG) phase is analyzed in detail for a fermionic Ising SG (FISG) model in the presence of a magnetic transverse field $Gamma$. The fermionic path integral formalism, replica method and static approach have been used to obt
Which is the field-theory for the spin-glass phase transition in a magnetic field? This is an open question in less than six dimensions. So far, perturbative computations have not found a stable fixed-point for the renormalization group flow. We tack
Torque, torque relaxation, and magnetization measurements on a AuFe spin glass sample are reported. The experiments carried out up to 7 T show a transverse irreversibility line in the (H,T) plane up to high applied fields, and a distinct strong longi
Spin glasses and many-body localization (MBL) are prime examples of ergodicity breaking, yet their physical origin is quite different: the former phase arises due to rugged classical energy landscape, while the latter is a quantum-interference effect
The stability of the spin-glass phase against a magnetic field is studied in the three and four dimensional Edwards-Anderson Ising spin glasses. Effective couplings and effective fields associated with length scale L are measured by a numerical domai