ترغب بنشر مسار تعليمي؟ اضغط هنا

Ion-beam modification of the magnetic properties of GaMnAs epilayers

157   0   0.0 ( 0 )
 نشر من قبل Tatiana G. Rappoport
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the controlled introduction of defects in GaMnAs by irradiating the samples with energetic ion beams, which modify the magnetic properties of the DMS. Our study focuses on the low-carrier-density regime, starting with as-grown GaMnAs films and decreasing even further the number of carriers, through a sequence of irradiation doses. We did a systematic study of magnetization as a function of temperature and of the irradiation ion dose. We also performed in-situ room temperature resistivity measurements as a function of the ion dose. We observe that both magnetic and transport properties of the samples can be experimentally manipulated by controlling the ion-beam parameters. For highly irradiated samples, the magnetic measurements indicate the formation of magnetic clusters together with a transition to an insulating state. The experimental data are compared with mean-field calculations for magnetization. The independent control of disorder and carrier density in the calculations allows further insight on the individual role of this two factors in the ion-beam-induced modification of GaMnAs.

قيم البحث

اقرأ أيضاً

The impact of 400 keV $Ar^+$ ion irradiation on the magnetic and electrical properties of in-plane magnetized magnetic tunnel junction (MTJ) stacks was investigated by ferromagnetic resonance, vibrating sample magnetometry and current-in-plane tunnel ing techniques. The irradiation-induced changes of the magnetic anisotropy, coupling energies and tunnel magnetoresistance (TMR) exhibited a correlated dependence on the ion fluence, which allowed us to distinguish between two irradiation regimes. In the low-fluence regime, ${Phi} < 10^{14} cm^{-2}$, the parameters required for having a functioning MTJ were preserved: the anisotropy of the FeCoB free layer (FL) was weakly modulated following a small decrease in the saturation magnetization $M_S$; the TMR decreased continuously; the interlayer exchange coupling (IEC) and the exchange bias (EB) decreased slightly. In the high-fluence regime, ${Phi} > 10^{14} cm^{-2}$, the MTJ was rendered inoperative: the modulation of the FL anisotropy was strong, caused by a strong decrease in $M_S$, ascribed to a high degree of interface intermixing between the FL and the Ta capping; the EB and IEC were also lost, likely due to intermixing of the layers composing the synthetic antiferromagnet; and the TMR vanished due to the irradiation-induced deterioration of the MgO barrier and MgO/FeCoB interfaces. We demonstrate that the layers surrounding the FL play a decisive role in determining the trend of the magnetic anisotropy evolution resulting from the irradiation, and that an ion-fluence window exists where such a modulation of magnetic anisotropy can occur, while not losing the TMR or the magnetic configuration of the MTJ.
90 - M Trassinelli 2016
Investigations of the complex behavior of the magnetization of manganese arsenide thin films due to defects induced by irradiation of slow heavy ions are presented. In addition to the thermal hysteresis suppression already highlighted in M. Trassinel li et al., Appl. Phys. Lett. 104, 081906 (2014), we report here on new local magnetic features recorded by a magnetic force microscope at different temperatures close to the characteristic sample phase transition. Complementary measurements of the global magnetization measurements in different conditions (applied magnetic field and temperatures) enable to complete the film characterization. The obtained results suggest that the ion bombardment produces regions where the local mechanical constraints are significantly different from the average, promoting the local presence of magneto-structural phases far from the equilibrium. These regions could be responsible for the thermal hysteresis suppression previously reported, irradiation-induced defects acting as seeds in the phase transition.
We have studied the influence of alloying copper with amorphous arsenic sulfide on the electronic properties of this material. In our computer-generated models, copper is found in two-fold near-linear and four-fold square-planar configurations, which apparently correspond to Cu(I) and Cu(II) oxidation states. The number of overcoordinated atoms, both arsenic and sulfur, grows with increasing concentration of copper. Overcoordinated sulfur is found in trigonal planar configuration, and overcoordinated (four-fold) arsenic is in tetrahedral configuration. Addition of copper suppresses the localization of lone-pair electrons on chalcogen atoms, and localized states at the top of the valence band are due to Cu 3d orbitals. Evidently, these additional Cu states, which are positioned at the same energies as the states due to ([As4]-)-([S_3]+) pairs, are responsible for masking photodarkening in Cu chalcogenides.
When a liquid is cooled below its melting temperature it usually crystallizes. However, if the quenching rate is fast enough, it is possible that the system remains in a disordered state, progressively losing its fluidity upon further cooling. When t he time needed for the rearrangement of the local atomic structure reaches approximately 100 seconds, the system becomes solid for any practical purpose, and this defines the glass transition temperature $T_g$. Approaching this transition from the liquid side, different systems show qualitatively different temperature dependencies of the viscosity, and, accordingly, they have been classified introducing the concept of fragility. We report experimental observations that relate the microscopic properties of the {it glassy phase} to the fragility. We find that the vibrational properties of the glass {it well below} $T_g$ are correlated with the fragility value. Consequently, we extend the fragility concept to the glassy state and indicate how to determine the fragility uniquely from glass properties well below $T_g$.
The authors report micro-Raman investigation of changes in the single and bilayer graphene crystal lattice induced by the low and medium energy electron-beam irradiation (5 and 20 keV). It was found that the radiation exposures results in appearance of the strong disorder D band around 1345 1/cm indicating damage to the lattice. The D and G peak evolution with the increasing radiation dose follows the amorphization trajectory, which suggests graphenes transformation to the nanocrystalline, and then to amorphous form. The results have important implications for graphene characterization and device fabrication, which rely on the electron microscopy and focused ion beam processing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا