ترغب بنشر مسار تعليمي؟ اضغط هنا

Observational rotation curves and density profiles vs. the Thomas-Fermi galaxy structure theory

340   0   0.0 ( 0 )
 نشر من قبل Hector de Vega J
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Thomas-Fermi approach to galaxy structure determines selfconsistently the fermionic warm dark matter (WDM) gravitational potential given the distribution function f(E). This framework is appropriate for macroscopic quantum systems: neutron stars, white dwarfs and WDM galaxies. Compact dwarf galaxies follow from the quantum degenerate regime, while dilute and large galaxies from the classical Boltzmann regime. We find analytic scaling relations for the main galaxy magnitudes as halo radius r_h, mass M_h and phase space density. The observational data for a large variety of galaxies are all well reproduced by these theoretical scaling relations. For the compact dwarfs, our results show small deviations from the scaling due to quantum macroscopic effects. We contrast the theoretical curves for the circular velocities and density profiles with the observational ones. All these results are independent of any WDM particle physics model, they only follow from the gravity interaction of the WDM particles and their fermionic nature. The theory rotation and density curves reproduce very well for r < r_h the observations of 10 different and independent sets of data for galaxy masses from 5x10^9 Msun till 5x10^{11} Msun. Our normalized circular velocity curves turn to be universal functions of r/r_h for all galaxies and reproduce very well the observational curves for r < r_h. Conclusion: the Thomas-Fermi approach correctly describes the galaxy structures (Abridged).



قيم البحث

اقرأ أيضاً

296 - J. J. Dalcanton , A. Stilp 2010
Rotation curves constrain a galaxys underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emis sion lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.
Bosonic ultra-light dark matter (ULDM) would form cored density distributions at the center of galaxies. These cores, seen in numerical simulations, admit analytic description as the lowest energy bound state solution (soliton) of the Schroedinger-Po isson equations. Numerical simulations of ULDM galactic halos found empirical scaling relations between the mass of the large-scale host halo and the mass of the central soliton. We discuss how the simulation results of different groups can be understood in terms of the basic properties of the soliton. Importantly, simulations imply that the energy per unit mass in the soliton and in the virialised host halo should be approximately equal. This relation lends itself to observational tests, because it predicts that the peak circular velocity, measured for the host halo in the outskirts of the galaxy, should approximately repeat itself in the central region. Contrasting this prediction to the measured rotation curves of well-resolved near-by galaxies, we show that ULDM in the mass range $msim (10^{-22}div 10^{-21})$ eV, which has been invoked as a possible solution to the small-scale puzzles of $Lambda$CDM, is in tension with the data. We suggest that a dedicated analysis of the Milky Way inner gravitational potential could probe ULDM up to $mlesssim 10^{-19}$ eV.
We develop an approach to compute observables beyond the linear regime of dark matter perturbations for general dark energy and modified gravity models. We do so by combining the Effective Field Theory of Dark Energy and Effective Field Theory of Lar ge-Scale Structure approaches. In particular, we parametrize the linear and nonlinear effects of dark energy on dark matter clustering in terms of the Lagrangian terms introduced in a companion paper, focusing on Horndeski theories and assuming the quasi-static approximation. The Euler equation for dark matter is sourced, via the Newtonian potential, by new nonlinear vertices due to modified gravity and, as in the pure dark matter case, by the effects of short-scale physics in the form of the divergence of an effective stress tensor. The effective fluid introduces a counterterm in the solution to the matter continuity and Euler equations, which allows a controlled expansion of clustering statistics on mildly nonlinear scales. We use this setup to compute the one-loop dark-matter power spectrum.
We explore the dynamics and observational predictions of the Warm Little Inflaton scenario, presently the simplest realization of warm inflation within a concrete quantum field theory construction. We consider three distinct types of scalar potential s for the inflaton, namely chaotic inflation with a quartic monomial potential, a Higgs-like symmetry breaking potential and a non-renormalizable plateau-like potential. In each case, we determine the parametric regimes in which the dynamical evolution is consistent for 50-60 e-folds of inflation, taking into account thermal corrections to the scalar potential and requiring, in particular, that the two fermions coupled directly to the inflaton remain relativistic and close to thermal equilibrium throughout the slow-roll regime and that the temperature is always below the underlying gauge symmetry breaking scale. We then compute the properties of the primordial spectrum of scalar curvature perturbations and the tensor-to-scalar ratio in the allowed parametric regions and compare them with Planck data, showing that this scenario is theoretically and observationally successful for a broad range of parameter values.
The growth rate of matter density perturbations has been measured from redshift-space distortion (RSD) in the galaxy power spectrum. We constrain the model parameter space for representative modified gravity models to explain the dark energy problem, by using the recent data of f_m(z)sigma_8(z) at the redshifts z = 0.06--0.8 measured by WiggleZ, SDSS LRG, BOSS, and 6dFGRS. We first test the Hu-Sawickis f(R) dark energy model, and find that only the parameter region close to the standard Lambda Cold Dark Matter (Lambda-CDM) model is allowed (lambda > 12 and 5 for n = 1.5 and 2, respectively, at 95% CL). We then investigate the covariant Galileon model and show that the parameter space consistent with the background expansion history is excluded by the RSD data at more than 10 sigma because of the too large growth rate predicted by the theory. Finally, we consider the extended Galileon scenario, and we find that, in contrast to the covariant Galileon, there is a model parameter space for a tracker solution that is consistent with the RSD data within a 2 sigma level.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا