ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraints on f(R) theory and Galileons from the latest data of galaxy redshift surveys

94   0   0.0 ( 0 )
 نشر من قبل Hiroyuki Okada
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The growth rate of matter density perturbations has been measured from redshift-space distortion (RSD) in the galaxy power spectrum. We constrain the model parameter space for representative modified gravity models to explain the dark energy problem, by using the recent data of f_m(z)sigma_8(z) at the redshifts z = 0.06--0.8 measured by WiggleZ, SDSS LRG, BOSS, and 6dFGRS. We first test the Hu-Sawickis f(R) dark energy model, and find that only the parameter region close to the standard Lambda Cold Dark Matter (Lambda-CDM) model is allowed (lambda > 12 and 5 for n = 1.5 and 2, respectively, at 95% CL). We then investigate the covariant Galileon model and show that the parameter space consistent with the background expansion history is excluded by the RSD data at more than 10 sigma because of the too large growth rate predicted by the theory. Finally, we consider the extended Galileon scenario, and we find that, in contrast to the covariant Galileon, there is a model parameter space for a tracker solution that is consistent with the RSD data within a 2 sigma level.

قيم البحث

اقرأ أيضاً

We investigate the viable exponential $f(R)$ gravity in the metric formalism with $f(R)=-beta R_s (1-e^{-R/R_s})$. The latest sample of the Hubble parameter measurements with 23 data points is used to place bounds on this $f(R)$ model. A joint analys is is also performed with the luminosity distances of Type Ia supernovae and baryon acoustic oscillations in the clustering of galaxies, and the shift parameters from the cosmic microwave background measurements, which leads to $0.240<Omega_m^0<0.296$ and $beta>1.47$ at 1$sigma$ confidence level. The evolutions of the deceleration parameter $q(z)$ and the effective equations of state $omega_{de}^{eff}(z)$ and $omega_{tot}^{eff}(z)$ are displayed. By taking the best-fit parameters as prior values, we work out the transition redshift (deceleration/acceleration) $z_T$ to be about 0.77. It turns out that the recent observations are still unable to distinguish the background dynamics in the $Lambda$CDM and exponential $f(R)$ models.
We use higher-redshift gamma-ray burst (GRB), HII starburst galaxy (HIIG), and quasar angular size (QSO-AS) measurements to constrain six spatially flat and non-flat cosmological models. These three sets of cosmological constraints are mutually consi stent. Cosmological constraints from a joint analysis of these data sets are largely consistent with currently-accelerating cosmological expansion as well as with cosmological constraints derived from a combined analysis of Hubble parameter ($H(z)$) and baryon acoustic oscillation (BAO, with Planck-determined baryonic matter density) measurements. A joint analysis of the $H(z)$ + BAO + QSO-AS + HIIG + GRB data provides fairly model-independent determinations of the non-relativistic matter density parameter $Omega_{rm m_0}=0.313pm0.013$ and the Hubble constant $H_0=69.3pm1.2 rm{km s^{-1} Mpc^{-1}}$. These data are consistent with the dark energy being a cosmological constant and with spatial hypersurfaces being flat, but they do not rule out mild dark energy dynamics or a little spatial curvature. We also investigate the effect of including quasar flux measurements in the mix and find no novel conclusions.
We present forecasted cosmological constraints from combined measurements of galaxy cluster abundances from the Simons Observatory and galaxy clustering from a DESI-like experiment on two well-studied modified gravity models, the chameleon-screened $ f(R)$ Hu-Sawicki model and the nDGP braneworld Vainshtein model. A Fisher analysis is conducted using $sigma_8$ constraints derived from thermal Sunyaev-Zeldovich (tSZ) selected galaxy clusters, as well as linear and mildly non-linear redshift-space 2-point galaxy correlation functions. We find that the cluster abundances drive the constraints on the nDGP model while $f(R)$ constraints are led by galaxy clustering. The two tracers of the cosmological gravitational field are found to be complementary, and their combination significantly improves constraints on the $f(R)$ in particular in comparison to each individual tracer alone. For a fiducial model of $f(R)$ with $text{log}_{10}(f_{R0})=-6$ and $n=1$ we find combined constraints of $sigma(text{log}_{10}(f_{R0}))=0.48$ and $sigma(n)=2.3$, while for the nDGP model with $n_{text{nDGP}}=1$ we find $sigma(n_{text{nDGP}})=0.087$. Around a fiducial General Relativity (GR) model, we find a $95%$ confidence upper limit on $f(R)$ of $f_{R0}leq5.68times 10^{-7}$. Our results present the exciting potential to utilize upcoming galaxy and CMB survey data available in the near future to discern and/or constrain cosmic deviations from GR.
Big bang nucleosynthesis in a modified gravity model of $f(R)propto R^n$ is investigated. The only free parameter of the model is a power-law index $n$. We find cosmological solutions in a parameter region of $1< n leq (4+sqrt{6})/5$. We calculate ab undances of $^4$He, D, $^3$He, $^7$Li, and $^6$Li during big bang nucleosynthesis. We compare the results with the latest observational data. It is then found that the power-law index is constrained to be $(n-1)=(-0.86pm 1.19)times 10^{-4}$ (95 % C.L.) mainly from observations of deuterium abundance as well as $^4$He abundance.
The model of holographic dark energy (HDE) with massive neutrinos and/or dark radiation is investigated in detail. The background and perturbation evolutions in the HDE model are calculated. We employ the PPF approach to overcome the gravity instabil ity difficulty (perturbation divergence of dark energy) led by the equation-of-state parameter $w$ evolving across the phantom divide $w=-1$ in the HDE model with $c<1$. We thus derive the evolutions of density perturbations of various components and metric fluctuations in the HDE model. The impacts of massive neutrino and dark radiation on the CMB anisotropy power spectrum and the matter power spectrum in the HDE scenario are discussed. Furthermore, we constrain the models of HDE with massive neutrinos and/or dark radiation by using the latest measurements of expansion history and growth of structure, including the Planck CMB temperature data, the baryon acoustic oscillation data, the JLA supernova data, the Hubble constant direct measurement, the cosmic shear data of weak lensing, the Planck CMB lensing data, and the redshift space distortions data. We find that $sum m_ u<0.186$ eV (95% CL) and $N_{rm eff}=3.75^{+0.28}_{-0.32}$ in the HDE model from the constraints of these data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا