ترغب بنشر مسار تعليمي؟ اضغط هنا

Pressure Support in Galaxy Disks: Impact on Rotation Curves and Dark Matter Density Profiles

253   0   0.0 ( 0 )
 نشر من قبل J. J. Dalcanton
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rotation curves constrain a galaxys underlying mass density profile, under the assumption that the observed rotation produces a centripetal force that exactly balances the inward force of gravity. However, most rotation curves are measured using emission lines from gas, which can experience additional forces due to pressure. In realistic galaxy disks, the gas pressure declines with radius, providing additional radial support to the disk. The measured tangential rotation speed will therefore tend to lag the true circular velocity of a test particle. The gas pressure is dominated by turbulence, and we evaluate its likely amplitude from recent estimates of the gas velocity dispersion and surface density. We show that where the amplitude of the rotation curve is comparable to the characteristic velocities of the interstellar turbulence, pressure support may lead to underestimates of the mass density of the underlying dark matter halo and the inner slope of its density profile. These effects may be significant for galaxies with rotation speeds <75km/s, but are unlikely to be significant in higher mass galaxies. We find that pressure support can be sustained over long timescales, because any reduction in support due to the conversion of gas into stars is compensated for by an inward flow of gas. However, we point to many uncertainties in assessing the importance of pressure support in galaxies. Thus, while pressure support may alleviate possible tensions between rotation curve observations and LambdaCDM on kiloparsec scales, it should not be viewed as a definitive solution at this time.

قيم البحث

اقرأ أيضاً

The Thomas-Fermi approach to galaxy structure determines selfconsistently the fermionic warm dark matter (WDM) gravitational potential given the distribution function f(E). This framework is appropriate for macroscopic quantum systems: neutron stars, white dwarfs and WDM galaxies. Compact dwarf galaxies follow from the quantum degenerate regime, while dilute and large galaxies from the classical Boltzmann regime. We find analytic scaling relations for the main galaxy magnitudes as halo radius r_h, mass M_h and phase space density. The observational data for a large variety of galaxies are all well reproduced by these theoretical scaling relations. For the compact dwarfs, our results show small deviations from the scaling due to quantum macroscopic effects. We contrast the theoretical curves for the circular velocities and density profiles with the observational ones. All these results are independent of any WDM particle physics model, they only follow from the gravity interaction of the WDM particles and their fermionic nature. The theory rotation and density curves reproduce very well for r < r_h the observations of 10 different and independent sets of data for galaxy masses from 5x10^9 Msun till 5x10^{11} Msun. Our normalized circular velocity curves turn to be universal functions of r/r_h for all galaxies and reproduce very well the observational curves for r < r_h. Conclusion: the Thomas-Fermi approach correctly describes the galaxy structures (Abridged).
103 - Dilip G. Banhatti 2007
After explaining the motivation for this article, I briefly recapitulate the methods used to determine, somewhat coarsely, the rotation curves of our Milky Way Galaxy and other spiral galaxies, especially in their outer parts, and the results of appl ying these methods. Recent observations and models of the very inner central parts of galaxian rotation curves are only briefly described. I then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Application of modified Newtonian dynamics to the outer parts of disk galaxies is then described. Finally, attempts to apply Einsteinian general relativity to the dynamics are summarized. The article ends with a summary and prospects for further work in this area.
278 - A. Del Popolo 2009
In the present paper, we improve the Extended Secondary Infall Model (ESIM) of Williams et al. (2004) to obtain further insights on the cusp/core problem. The model takes into account the effect of ordered and random angular momentum, dynamical frict ion and baryon adiabatic contraction in order to obtain a secondary infall model more close to the collapse reality. The model is applied to structures on galactic scales (normal and dwarf spiral galaxies) and on cluster of galaxies scales. The results obtained suggest that angular momentum and dynamical friction are able, on galactic scales, to overcome the competing effect of adiabatic contraction eliminating the cusp. The NFW profile can be reobtained, in our model only if the system is constituted just by dark matter and the magnitude of angular momentum and dynamical friction are reduced with respect to the values predicted by the model itself. The rotation curves of four LSB galaxies from de Blok & Bosma (2002) are compared to the rotation curves obtained by the model in the present paper obtaining a good fit to the observational data. On scales smaller than $simeq 10^{11} h^{-1} M_{odot}$ the slope $alpha simeq 0$ and on cluster scales we observe a similar evolution of the dark matter density profile but in this case the density profile slope flattens to $alpha simeq 0.6$ for a cluster of $simeq 10^{14} h^{-1} M_{odot}$. The total mass profile, differently from that of dark matter, shows a central cusp well fitted by a NFW model.
167 - Chris Brook 2015
Rotation curves of galaxies show a wide range of shapes, which can be paramaterized as scatter in Vrot(1kpc)/Vmax i.e.the ratio of the rotation velocity measured at 1kpc and the maximum measured rotation velocity. We examine whether the observed scat ter can be accounted for by combining scatters in disc scale-lengths, the concentration-halo mass relation, and the M*-Mhalo relation. We use these scatters to create model galaxy populations; when housed within dark matter halos that have universal, NFW density profiles, the model does not match the lowest observed values of Vrot(1kpc)/Vmax and has too little scatter in Vrot(1kpc)/Vmax compared to observations. By contrast, a model using a mass dependent dark matter profile, where the inner slope is determined by the ratio of M*/Mhalo, produces galaxies with low values of Vrot(1kpc)/Vmax and a much larger scatter, both in agreement with observation. We conclude that the large observed scatter in Vrot(1kpc)/Vmax favours density profiles that are significantly affected by baryonic processes. Alternative dark matter core formation models such as SIDM may also account for the observed variation in rotation curve shapes, but these observations may provide important constraints in terms of core sizes, and whether they vary with halo mass and/or merger history.
We present the first simulated galaxy clusters (M_200 > 10^14 Msun) with both self-interacting dark matter (SIDM) and baryonic physics. They exhibit a greater diversity in both dark matter and stellar density profiles than their counterparts in simul ations with collisionless dark matter (CDM), which is generated by the complex interplay between dark matter self-interactions and baryonic physics. Despite variations in formation history, we demonstrate that analytical Jeans modelling predicts the SIDM density profiles remarkably well, and the diverse properties of the haloes can be understood in terms of their different final baryon distributions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا