ﻻ يوجد ملخص باللغة العربية
Over the last decade the search for compounds combining the resources of semiconductors and ferromagnets has evolved into an important field of materials science. This endeavour has been fuelled by continual demonstrations of remarkable low-temperature functionalities found for ferromagnetic structures of (Ga,Mn)As, p-(Cd,Mn)Te, and related compounds as well as by ample observations of ferromagnetic signatures at high temperatures in a number of non-metallic systems. In this paper, recent experimental and theoretical developments are reviewed emphasising that, from the one hand, they disentangle many controversies and puzzles accumulated over the last decade and, on the other, offer new research prospects.
The author reviews the present understanding of the hole-mediated ferromagnetism in magnetically doped semiconductors and oxides as well as the origin of high temperature ferromagnetism in materials containing no valence band holes. It is argued that
Magnetic properties of Ga$_{1-x}$Mn$_x$N are studied theoretically by employing a tight binding approach to determine exchange integrals $J_{ij}$ characterizing the coupling between Mn spin pairs located at distances $R_{ij}$ up to the 16th cation co
The potential of semiconductors assembled from nanocrystals (NC semiconductors) has been demonstrated for a broad array of electronic and optoelectronic devices, including transistors, light emitting diodes, solar cells, photodetectors, thermoelectri
This paper reviews the present understanding of the origin of ferromagnetic response of diluted magnetic semiconductors and diluted magnetic oxides as well as in some nominally magnetically undoped materials. It is argued that these systems can be gr
Currents across thin insulators are commonly taken as single electrons moving across classically forbidden regions; this independent particle picture is well-known to describe most tunneling phenomena. Examining quantum transport from a different per