ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunable quantum gate between a superconducting atom and a propagating microwave photon

94   0   0.0 ( 0 )
 نشر من قبل Kazuki Koshino
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a two-qubit quantum logic gate between a superconducting atom and a propagating microwave photon. The atomic qubit is encoded on its lowest two levels and the photonic qubit is encoded on its carrier frequencies. The gate operation completes deterministically upon reflection of a photon, and various two-qubit gates (SWAP, $sqrt{rm SWAP}$, and Identity) are realized through {it in situ} control of the drive field. The proposed gate is applicable to construction of a network of superconducting atoms, which enables gate operations between non-neighboring atoms.

قيم البحث

اقرأ أيضاً

The ability to nondestructively detect the presence of a single, traveling photon has been a long-standing goal in optics, with applications in quantum information and measurement. Realising such a detector is complicated by the fact that photon-phot on interactions are typically very weak. At microwave frequencies, very strong effective photon-photon interactions in a waveguide have recently been demonstrated. Here we show how this type of interaction can be used to realize a quantum nondemolition measurement of a single propagating microwave photon. The scheme we propose uses a chain of solid-state 3-level systems (transmons), cascaded through circulators which suppress photon backscattering. Our theoretical analysis shows that microwave-photon detection with fidelity around 90% can be realized with existing technologies.
We report on the design and performance of an on-chip microwave circulator with a widely (GHz) tunable operation frequency. Non-reciprocity is created with a combination of frequency conversion and delay, and requires neither permanent magnets nor mi crowave bias tones, allowing on-chip integration with other superconducting circuits without the need for high-bandwidth control lines. Isolation in the device exceeds 20 dB over a bandwidth of tens of MHz, and its insertion loss is small, reaching as low as 0.9 dB at select operation frequencies. Furthermore, the device is linear with respect to input power for signal powers up to hundreds of fW ($approx 10^3$ circulating photons), and the direction of circulation can be dynamically reconfigured. We demonstrate its operation at a selection of frequencies between 4 and 6 GHz.
118 - Qi-Kai He , D. L. Zhou 2018
Coherent manipulation of a quantum system is one of the main themes in current physics researches. In this work, we design a circuit QED system with a tunable coupling between an artificial atom and a superconducting resonator while keeping the cavit y frequency and the atomic frequency invariant. By controlling the time dependence of the external magnetic flux, we show that it is possible to tune the interaction from the extremely weak coupling regime to the ultrastrong coupling one. Using the quantum perturbation theory, we obtain the coupling strength as a function of the external magnetic flux. In order to show its reliability in the fields of quantum simulation and quantum computing, we study its sensitivity to noises.
We show how to bridge the divide between atomic systems and electronic devices by engineering a coupling between the motion of a single ion and the quantized electric field of a resonant circuit. Our method can be used to couple the internal state of an ion to the quantized circuit with the same speed as the internal-state coupling between two ions. All the well-known quantum information protocols linking ion internal and motional states can be converted to protocols between circuit photons and ion internal states. Our results enable quantum interfaces between solid state qubits, atomic qubits, and light, and lay the groundwork for a direct quantum connection between electrical and atomic metrology standards.
130 - T. Miyanaga , A. Tomonaga , H. Ito 2021
We investigate the ultrastrong tunable coupler for coupling of superconducting resonators. Obtained coupling constant exceeds 1 GHz, and the wide range tunability is achieved both antiferromagnetics and ferromagnetics from -1086 MHz to 604 MHz. Ultra strong coupler is composed of rf-SQUID and dc-SQUID as tunable junctions, which connected to resonators via shared aluminum thin film meander lines enabling such a huge coupling constant. The spectrum of the coupler obviously shows the breaking of the rotating wave approximation, and our circuit model treating the Josephson junction as a tunable inductance reproduces the experimental results well. The ultrastrong coupler is expected to be utilized in quantum annealing circuits and/or NISQ devices with dense connections between qubits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا