ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic Variational Method as Quantization Scheme I: Field Quantization of Complex Klein-Gordan Equation

82   0   0.0 ( 0 )
 نشر من قبل Tomoi Koide
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Stochastic Variational Method (SVM) is the generalization of the variation method to the case with stochastic variables. In the series of papers, we investigate the applicability of SVM as an alternative field quantization scheme. Here, we discuss the complex Klein-Gordon equation. In this scheme, the Euler-Lagrangian equation for the stochastic fields leads to the functional Schroedinger equation, which in turn can be interpreted as the ideal fluid equation in the functional space. We show that the Fock state vector is given by the stationary solution of these differential equations and various results in the usual canonical quantization can be reproduced, including the effect of anti-particles. The present formulation is a quantization scheme based on commutable variables, so that there appears no ambiguity associated with the ordering of operators, for example, in the definition of Noether charges.



قيم البحث

اقرأ أيضاً

Quantization of electromagnetic fields is investigated in the framework of stochastic variational method (SVM). Differently from the canonical quantization, this method does not require canonical form and quantization can be performed directly from t he gauge invariant Lagrangian. The gauge condition is used to choose dynamically independent variables. We verify that, in the Coulomb gauge condition, SVM result is completely equivalent to the traditional result. On the other hand, in the Lorentz gauge condition, SVM quantization can be performed without introducing the indefinite metric. The temporal and longitudinal components of the gauge filed, then, behave as c-number functionals affected by quantum fluctuation through the interaction with charged matter fields. To see further the relation between SVM and the canonical quantization, we quantize the usual gauge Lagrangian with the Fermi term and argue a stochastic process with a negative second order correlation is introduced to reproduce the indefinite metric.
We propose here a new symplectic quantization scheme, where quantum fluctuations of a scalar field theory stem from two main assumptions: relativistic invariance and equiprobability of the field configurations with identical value of the action. In t his approach the fictitious time of stochastic quantization becomes a genuine additional time variable, with respect to the coordinate time of relativity. This proper time is associated to a symplectic evolution in the action space, which allows one to investigate not only asymptotic, i.e. equilibrium, properties of the theory, but also its non-equilibrium transient evolution. In this paper, which is the first one in a series of two, we introduce a formalism which will be applied to general relativity in the companion work Symplectic quantization II.
While many aspects of general relativity have been tested, and general principles of quantum dynamics demand its quantization, there is no direct evidence for that. It has been argued that development of detectors sensitive to individual gravitons is unlikely, and perhaps impossible. We argue here, however, that measurement of polarization of the Cosmic Microwave Background due to a long wavelength stochastic background of gravitational waves from Inflation in the Early Universe would firmly establish the quantization of gravity.
Gravitational-wave astronomy has the potential to substantially advance our knowledge of the cosmos, from the most powerful astrophysical engines to the initial stages of our universe. Gravitational waves also carry information about the nature of bl ack holes. Here we investigate the potential of gravitational-wave detectors to test a proposal by Bekenstein and Mukhanov that the area of black hole horizons is quantized in units of the Planck area. Our results indicate that this quantization could have a potentially observable effect on the classical gravitational wave signals received by detectors. In particular, we find distorted gravitational-wave echoes in the post-merger waveform describing the inspiral and merger of two black holes. These echoes have a specific frequency content that is characteristic of black hole horizon area quantization.
We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e^{beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first revisit the construction of the LQG measure in Liouville conformal field theory (LCFT) in the $L^2$ regime $0<beta<sqrt{2}$. This uniformizes in this regime the approaches of David-Kupiainen-Rhodes-Vargas (2016), David-Rhodes-Vargas (2016) and Guillarmou-Rhodes-Vargas (2019) which treated the case of a closed surface with genus 0, 1 and $> 1$ respectively. Moreover, our argument shows that this measure is independent of the approximation procedure for a large class of smooth approximations. (ii) We prove almost sure global well-posedness of the parabolic stochastic dynamics, and invariance of the measure under this stochastic flow. In particular, our results improve previous results obtained by Garban (2020) in the cases of the sphere and the torus with their canonical metric, and are new in the case of closed surfaces with higher genus.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا