ﻻ يوجد ملخص باللغة العربية
Quantization of electromagnetic fields is investigated in the framework of stochastic variational method (SVM). Differently from the canonical quantization, this method does not require canonical form and quantization can be performed directly from the gauge invariant Lagrangian. The gauge condition is used to choose dynamically independent variables. We verify that, in the Coulomb gauge condition, SVM result is completely equivalent to the traditional result. On the other hand, in the Lorentz gauge condition, SVM quantization can be performed without introducing the indefinite metric. The temporal and longitudinal components of the gauge filed, then, behave as c-number functionals affected by quantum fluctuation through the interaction with charged matter fields. To see further the relation between SVM and the canonical quantization, we quantize the usual gauge Lagrangian with the Fermi term and argue a stochastic process with a negative second order correlation is introduced to reproduce the indefinite metric.
Stochastic Variational Method (SVM) is the generalization of the variation method to the case with stochastic variables. In the series of papers, we investigate the applicability of SVM as an alternative field quantization scheme. Here, we discuss th
Following the idea of Alekseev and Shatashvili we derive the path integral quantization of a modified relativistic particle action that results in the Feynman propagator of a free field with arbitrary spin. This propagator can be associated with the
Gravity is perturbatively renormalizable for the physical states which can be conveniently defined via foliation-based quantization. In recent sequels, one-loop analysis was explicitly carried out for Einstein-scalar and Einstein-Maxwell systems. Var
Quantization together with quantum dynamics can be simultaneously formulated as the problem of finding an appropriate flat connection on a Hilbert bundle over a contact manifold. Contact geometry treats time, generalized positions and momenta as poin
We study quantum corrections to projectable Horava gravity with $z = 2$ scaling in 2+1 dimensions. Using the background field method, we utilize a non-singular gauge to compute the anomalous dimension of the cosmological constant at one loop, in a normalization adapted to the spatial curvature term.