ترغب بنشر مسار تعليمي؟ اضغط هنا

Stochastic quantization of Liouville conformal field theory

128   0   0.0 ( 0 )
 نشر من قبل Tristan Robert
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a nonlinear stochastic heat equation forced by a space-time white noise on closed surfaces, with nonlinearity $e^{beta u}$. This equation corresponds to the stochastic quantization of the Liouville quantum gravity (LQG) measure. (i) We first revisit the construction of the LQG measure in Liouville conformal field theory (LCFT) in the $L^2$ regime $0<beta<sqrt{2}$. This uniformizes in this regime the approaches of David-Kupiainen-Rhodes-Vargas (2016), David-Rhodes-Vargas (2016) and Guillarmou-Rhodes-Vargas (2019) which treated the case of a closed surface with genus 0, 1 and $> 1$ respectively. Moreover, our argument shows that this measure is independent of the approximation procedure for a large class of smooth approximations. (ii) We prove almost sure global well-posedness of the parabolic stochastic dynamics, and invariance of the measure under this stochastic flow. In particular, our results improve previous results obtained by Garban (2020) in the cases of the sphere and the torus with their canonical metric, and are new in the case of closed surfaces with higher genus.



قيم البحث

اقرأ أيضاً

The goal of this note is to show that the Riemann-Hilbert problem to find multivalued analytic functions with $SL(2,mathbb{C})$-valued monodromy on Riemann surfaces of genus zero with $n$ punctures can be solved by taking suitable linear combinations of the conformal blocks of Liouville theory at $c=1$. This implies a similar representation for the isomonodromic tau-function. In the case $n=4$ we thereby get a proof of the relation between tau-functions and conformal blocks discovered in cite{GIL}. We briefly discuss a possible application of our results to the study of relations between certain $mathcal{N}=2$ supersymmetric gauge theories and conformal field theory.
We introduce a stochastic analysis of Grassmann random variables suitable for the stochastic quantization of Euclidean fermionic quantum field theories. Analysis on Grassmann algebras is developed here from the point of view of quantum probability: a Grassmann random variable is an homomorphism of an abstract Grassmann algebra into a quantum probability space, i.e. a $C^{ast}$-algebra endowed with a suitable state. We define the notion of Gaussian processes, Brownian motion and stochastic (partial) differential equations taking values in Grassmann algebras. We use them to study the long time behavior of finite and infinite dimensional Langevin Grassmann stochastic differential equations driven by Gaussian space-time white noise and to describe their invariant measures. As an application we give a proof of the stochastic quantization and of the removal of the space cut-off for the Euclidean Yukawa model, indicating also how this method can be extended to other models of quantum fields.
404 - Robert McRae 2019
A two-dimensional chiral conformal field theory can be viewed mathematically as the representation theory of its chiral algebra, a vertex operator algebra. Vertex operator algebras are especially well suited for studying logarithmic conformal field t heory (in which correlation functions have logarithmic singularities arising from non-semisimple modules for the chiral algebra) because of the logarithmic tensor category theory of Huang, Lepowsky, and Zhang. In this paper, we study not-necessarily-semisimple or rigid braided tensor categories $mathcal{C}$ of modules for the fixed-point vertex operator subalgebra $V^G$ of a vertex operator (super)algebra $V$ with finite automorphism group $G$. The main results are that every $V^G$-module in $mathcal{C}$ with a unital and associative $V$-action is a direct sum of $g$-twisted $V$-modules for possibly several $gin G$, that the category of all such twisted $V$-modules is a braided $G$-crossed (super)category, and that the $G$-equivariantization of this braided $G$-crossed (super)category is braided tensor equivalent to the original category $mathcal{C}$ of $V^G$-modules. This generalizes results of Kirillov and M{u}ger proved using rigidity and semisimplicity. We also apply the main results to the orbifold rationality problem: whether $V^G$ is strongly rational if $V$ is strongly rational. We show that $V^G$ is indeed strongly rational if $V$ is strongly rational, $G$ is any finite automorphism group, and $V^G$ is $C_2$-cofinite.
In this paper, we continue to consider the generalized Liouville system: $$ Delta_g u_i+sum_{j=1}^n a_{ij}rho_jleft(frac{h_j e^{u_j}}{int h_j e^{u_j}}- {1} right)=0quadtext{in ,}M,quad iin I={1,cdots,n}, $$ where $(M,g)$ is a Riemann surface $M$ with volume $1$, $h_1,..,h_n$ are positive smooth functions and $rho_jin mathbb R^+$($jin I$). In previous works Lin-Zhang identified a family of hyper-surfaces $Gamma_N$ and proved a priori estimates for $rho=(rho_1,..,rho_n)$ in areas separated by $Gamma_N$. Later Lin-Zhang also calculated the leading term of $rho^k-rho$ where $rhoin Gamma_1$ is the limit of $rho^k$ on $Gamma_1$ and $rho^k$ is the parameter of a bubbling sequence. This leading term is particularly important for applications but it is very hard to be identified if $rho^k$ tends to a higher order hypersurface $Gamma_N$ ($N>1$). Over the years numerous attempts have failed but in this article we overcome all the stumbling blocks and completely solve the problem under the most general context: We not only capture the leading terms of $rho^k-rhoin Gamma_N$, but also reveal new robustness relations of coefficient functions at different blowup points.
By studying the infra-red fixed point of an $mathcal{N}=(0,2)$ Landau-Ginzburg model, we find an example of modular invariant partition function beyond the ADE classification. This stems from the fact that a part of the left-moving sector is a new co nformal field theory which is a variant of the parafermion model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا