ﻻ يوجد ملخص باللغة العربية
We propose here a new symplectic quantization scheme, where quantum fluctuations of a scalar field theory stem from two main assumptions: relativistic invariance and equiprobability of the field configurations with identical value of the action. In this approach the fictitious time of stochastic quantization becomes a genuine additional time variable, with respect to the coordinate time of relativity. This proper time is associated to a symplectic evolution in the action space, which allows one to investigate not only asymptotic, i.e. equilibrium, properties of the theory, but also its non-equilibrium transient evolution. In this paper, which is the first one in a series of two, we introduce a formalism which will be applied to general relativity in the companion work Symplectic quantization II.
The symplectic quantization scheme proposed for matter scalar fields in the companion paper Symplectic quantization I is generalized here to the case of space-time quantum fluctuations. Symplectic quantization considers an explicit dependence of the
We establish a dictionary between group field theory (thus, spin networks and random tensors) states and generalized random tensor networks. Then, we use this dictionary to compute the R{e}nyi entropy of such states and recover the Ryu-Takayanagi for
Einstein equations projected on to a black hole horizon gives rise to Navier-Stokes equations. Horizon-fluids typically possess unusual features like negative bulk viscosity and it is not clear whether a statistical mechanical description exists for
We describe the evolution of slowly spinning compact objects in the late inspiral with Newtonian corrections due to spin, tides, dissipation and post-Newtonian corrections to the point mass term in the action within the effective field theory framewo
We study relativistic anyon field theory in 1+1 dimensions. While (2+1)-dimensional anyon fields are equivalent to boson or fermion fields coupled with the Chern-Simons gauge fields, (1+1)-dimensional anyon fields are equivalent to boson or fermion f