ترغب بنشر مسار تعليمي؟ اضغط هنا

On the subgroup permutability degree of the simple Suzuki groups

156   0   0.0 ( 0 )
 نشر من قبل Stefanos Aivazidis
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove that the subgroup permutability degree of the simple Suzuki groups vanishes asymptotically. In the course of the proof we establish that the limit of the probability of a subgroup of $Sz(q)$ being a 2-group is equal to 1.



قيم البحث

اقرأ أيضاً

In this paper we measure how efficiently a finite simple group $G$ is generated by its elements of order $p$, where $p$ is a fixed prime. This measure, known as the $p$-width of $G$, is the minimal $kin mathbb{N}$ such that any $gin G$ can be written as a product of at most $k$ elements of order $p$. Using primarily character theoretic methods, we sharply bound the $p$-width of some low rank families of Lie type groups, as well as the simple alternating and sporadic groups.
83 - Wenhao Wang 2021
We show the connection between the relative Dehn function of a finitely generated metabelian group and the distortion function of a corresponding subgroup in the wreath product of two free abelian groups of finite rank. Further, we show that if a fin itely generated metabelian group $G$ is an extension of an abelian group by $mathbb Z$ the relative Dehn function of $G$ is polynomially bounded. Therefore, if $G$ is finitely presented, the Dehn function is bounded above by the exponential function up to equivalence.
A valuated group with normal forms is a group with an integer-valued length function satisfying some Lyndons axioms and an additional axiom considered by Hurley. We prove a subgroup theorem for valuated groups with normal forms analogous to Grushko-N eumanns theorem. We study also the CSA property in such groups.
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinit e completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gammaright)=Cleft(Aut(Gamma),Gammaright)$. Let $Gamma$ be a finitely generated group, $bar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=bar{Gamma}/tor(bar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)=textrm{Im}(Aut(Gamma)to Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gammaright)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gammaright)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$. In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا