ترغب بنشر مسار تعليمي؟ اضغط هنا

On the p-width of finite simple groups

134   0   0.0 ( 0 )
 نشر من قبل Alexander Malcolm
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we measure how efficiently a finite simple group $G$ is generated by its elements of order $p$, where $p$ is a fixed prime. This measure, known as the $p$-width of $G$, is the minimal $kin mathbb{N}$ such that any $gin G$ can be written as a product of at most $k$ elements of order $p$. Using primarily character theoretic methods, we sharply bound the $p$-width of some low rank families of Lie type groups, as well as the simple alternating and sporadic groups.



قيم البحث

اقرأ أيضاً

We give a short proof of the fact that if all characteristic p simple modules of the finite group G have dimension less than p, then G has a normal Sylow p-subgroup.
For a finite group generated by involutions, the involution width is defined to be the minimal $kinmathbb{N}$ such that any group element can be written as a product of at most $k$ involutions. We show that the involution width of every non-abelian f inite simple group is at most $4$. This result is sharp, as there are families with involution width precisely 4.
We define and study supercharacters of the classical finite unipotent groups of symplectic and orthogonal types (over any finite field of odd characteristic). We show how supercharacters for groups of those types can be obtained by restricting the su percharacter theory of the finite unitriangular group, and prove that supercharacters are orthogonal and provide a partition of the set of all irreducible characters. We also describe all irreducible characters of maximum degree in terms of the root system, and show how they can be obtained as constituents of particular supercharacters.
Let $p$ be a fixed prime. For a finite group generated by elements of order $p$, the $p$-width is defined to be the minimal $kinmathbb{N}$ such that any group element can be written as a product of at most $k$ elements of order $p$. Let $A_{n}$ denot e the alternating group of even permutations on $n$ letters. We show that the $p$-width of $A_{n}$ $(ngeq p)$ is at most $3$. This result is sharp, as there are families of alternating groups with $p$-width precisely 3, for each prime $p$.
165 - Boris Weisfeiler 2012
This is a nearly complete manuscript left behind by Boris Weisfeiler before his disappearance during a hiking trip in Chile in 1985. It is posted on a request from the authors sister, Olga Weisfeiler.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا