ﻻ يوجد ملخص باللغة العربية
We show the connection between the relative Dehn function of a finitely generated metabelian group and the distortion function of a corresponding subgroup in the wreath product of two free abelian groups of finite rank. Further, we show that if a finitely generated metabelian group $G$ is an extension of an abelian group by $mathbb Z$ the relative Dehn function of $G$ is polynomially bounded. Therefore, if $G$ is finitely presented, the Dehn function is bounded above by the exponential function up to equivalence.
In this paper, we compute an upper bound for the Dehn function of a finitely presented metabelian group. In addition, we prove that the same upper bound works for the relative Dehn function of a finitely generated metabelian group. We also show that
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completi
We show that the Dehn function of the handlebody group is exponential in any genus $ggeq 3$. On the other hand, we show that the handlebody group of genus $2$ is cubical, biautomatic, and therefore has a quadratic Dehn function.
For every $kgeqslant 3$, we exhibit a simply connected $k$-nilpotent Lie group $N_k$ whose Dehn function behaves like $n^k$, while the Dehn function of its associated Carnot graded group $mathsf{gr}(N_k)$ behaves like $n^{k+1}$. This property and its
In this paper we describe the profinite completion of the free solvable group on m generators of solvability length r>1. Then, we show that for m=r=2, the free metabelian group on two generators does not have the Congruence Subgroup Property.