ترغب بنشر مسار تعليمي؟ اضغط هنا

Subgroup theorem for valuated groups and the CSA property

221   0   0.0 ( 0 )
 نشر من قبل Abderezak Ould Houcine
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A valuated group with normal forms is a group with an integer-valued length function satisfying some Lyndons axioms and an additional axiom considered by Hurley. We prove a subgroup theorem for valuated groups with normal forms analogous to Grushko-Neumanns theorem. We study also the CSA property in such groups.



قيم البحث

اقرأ أيضاً

The goal of this paper is to give a group-theoretic proof of the congruence subgroup property for $Aut(F_2)$, the group of automorphisms of a free group on two generators. This result was first proved by Asada using techniques from anabelian geometry , and our proof is, to a large extent, a translation of Asadas proof into group-theoretic language. This translation enables us to simplify many parts of Asadas original argument and prove a quantitative version of the congruence subgroup property for $Aut(F_2)$.
The congruence subgroup problem for a finitely generated group $Gamma$ and $Gleq Aut(Gamma)$ asks whether the map $hat{G}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(G,Gammaright)$? Here $hat{X}$ denotes the profinit e completion of $X$. In the case $G=Aut(Gamma)$ we denote $Cleft(Gammaright)=Cleft(Aut(Gamma),Gammaright)$. Let $Gamma$ be a finitely generated group, $bar{Gamma}=Gamma/[Gamma,Gamma]$, and $Gamma^{*}=bar{Gamma}/tor(bar{Gamma})congmathbb{Z}^{(d)}$. Denote $Aut^{*}(Gamma)=textrm{Im}(Aut(Gamma)to Aut(Gamma^{*}))leq GL_{d}(mathbb{Z})$. In this paper we show that when $Gamma$ is nilpotent, there is a canonical isomorphism $Cleft(Gammaright)simeq C(Aut^{*}(Gamma),Gamma^{*})$. In other words, $Cleft(Gammaright)$ is completely determined by the solution to the classical congruence subgroup problem for the arithmetic group $Aut^{*}(Gamma)$. In particular, in the case where $Gamma=Psi_{n,c}$ is a finitely generated free nilpotent group of class $c$ on $n$ elements, we get that $C(Psi_{n,c})=C(mathbb{Z}^{(n)})={e}$ whenever $ngeq3$, and $C(Psi_{2,c})=C(mathbb{Z}^{(2)})=hat{F}_{omega}$ = the free profinite group on countable number of generators.
Answering a question of Dan Haran and generalizing some results of Aschbacher-Guralnick and Suzuki, we prove that given a set of primes pi, any finite group can be generated by a pi-subgroup and a pi-subgroup. This gives a free product description of a countably generated free profinite group.
The congruence subgroup problem for a finitely generated group $Gamma$ asks whether $widehat{Autleft(Gammaright)}to Aut(hat{Gamma})$ is injective, or more generally, what is its kernel $Cleft(Gammaright)$? Here $hat{X}$ denotes the profinite completi on of $X$. In this paper we first give two new short proofs of two known results (for $Gamma=F_{2}$ and $Phi_{2}$) and a new result for $Gamma=Phi_{3}$: 1. $Cleft(F_{2}right)=left{ eright}$ when $F_{2}$ is the free group on two generators. 2. $Cleft(Phi_{2}right)=hat{F}_{omega}$ when $Phi_{n}$ is the free metabelian group on $n$ generators, and $hat{F}_{omega}$ is the free profinite group on $aleph_{0}$ generators. 3. $Cleft(Phi_{3}right)$ contains $hat{F}_{omega}$. Results 2. and 3. should be contrasted with an upcoming result of the first author showing that $Cleft(Phi_{n}right)$ is abelian for $ngeq4$.
We prove that the finitely presentable subgroups of residually free groups are separable and that the subgroups of type $mathrm{FP}_infty$ are virtual retracts. We describe a uniform solution to the membership problem for finitely presentable subgroups of residually free groups.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا