ترغب بنشر مسار تعليمي؟ اضغط هنا

Rare decay B -> K ll form factors from lattice QCD

120   0   0.0 ( 0 )
 نشر من قبل Chris Bouchard
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate, for the first time using unquenched lattice QCD, form factors for the rare decay B -> Kll in and beyond the Standard Model. Our lattice QCD calculation utilizes a nonrelativistic QCD formulation for the b valence quarks, the highly improved staggered quark formulation for the light valence quarks, and employs the MILC 2+1 asqtad ensembles. The form factor results, based on the z expansion, are valid over the full kinematic range of q^2. We construct the ratios f0/f+ and fT/f+, which are useful in constraining new physics and verifying effective theory form factor symmetry relations. We also discuss the calculation of Standard Model observables.



قيم البحث

اقرأ أيضاً

The semileptonic process, B --> pi l u, is studied via full QCD Lattice simulations. We use unquenched gauge configurations generated by the MILC collaboration. These include the effect of vacuum polarization from three quark flavors: the $s$ quark and two very light flavors ($u/d$) of variable mass allowing extrapolations to the physical chiral limit. We employ Nonrelativistic QCD to simulate the $b$ quark and a highly improved staggered quark action for the light sea and valence quarks. We calculate the form factors $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 GeV$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |v_{ub}|^2 = 1.46(35) ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averaging Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 4.22(30)(51) times 10^{-3}$. PLEASE NOTE APPENDIX B with an ERRATUM, to appear in Physical Review D, to the published version of this e-print (Phys.Rev.D 73, 074502 (2006)). Results for the form factor $f_+(q^2)$ in the chiral limit have changed significantly. The last two sentences in this abstract should now read; We calculate the form factor $f_+(q^2)$ and $f_0(q^2)$ in the chiral limit for the range 16 Gev$^2 leq q^2 < q^2_{max}$ and obtain $int^{q^2_{max}}_{16 GeV^2} [dGamma/dq^2] dq^2 / |V_{ub}|^2 = 2.07(57)ps^{-1}$. Combining this with a preliminary average by the Heavy Flavor Averagibg Group (HFAG05) of recent branching fraction data for exclusive B semileptonic decays from the BaBar, Belle and CLEO collaborations, leads to $|V_{ub}| = 3.55(25)(50) times 10^{-3}$.
We report the first lattice QCD calculation of the form factors for the standard model tree-level decay $B_sto K ell u$. In combination with future measurement, this calculation will provide an alternative exclusive semileptonic determination of $|V_ {ub}|$. We compare our results with previous model calculations, make predictions for differential decay rates and branching fractions, and predict the ratio of differential branching fractions between $B_sto Ktau u$ and $B_sto Kmu u$. We also present standard model predictions for differential decay rate forward-backward asymmetries, polarization fractions, and calculate potentially useful ratios of $B_sto K$ form factors with those of the fictitious $B_stoeta_s$ decay. Our lattice simulations utilize NRQCD $b$ and HISQ light quarks on a subset of the MILC Collaborations $2+1$ asqtad gauge configurations, including two lattice spacings and a range of light quark masses.
We compute the form factors for the $B to Kl^+l^-$ semileptonic decay process in lattice QCD using gauge-field ensembles with 2+1 flavors of sea quark, generated by the MILC Collaboration. The ensembles span lattice spacings from 0.12 to 0.045 fm and have multiple sea-quark masses to help control the chiral extrapolation. The asqtad improved staggered action is used for the light valence and sea quarks, and the clover action with the Fermilab interpretation is used for the heavy $b$ quark. We present results for the form factors $f_+(q^2)$, $f_0(q^2)$, and $f_T(q^2)$, where $q^2$ is the momentum transfer, together with a comprehensive examination of systematic errors. Lattice QCD determines the form factors for a limited range of $q^2$, and we use the model-independent $z$ expansion to cover the whole kinematically allowed range. We present our final form-factor results as coefficients of the $z$ expansion and the correlations between them, where the errors on the coefficients include statistical and all systematic uncertainties. We use this complete description of the form factors to test QCD predictions of the form factors at high and low $q^2$. We also compare a Standard-Model calculation of the branching ratio for $B to Kl^+l^-$ with experimental data.
241 - C. Alexandrou 2010
We present results on the nucleon axial form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length $L=2.1$ fm and $L=2.8$ fm. Cut-off effects a re investigated using three different values of the lattice spacings, namely $a=0.089$ fm, $a=0.070$ fm and $a=0.056$ fm. The nucleon axial charge is obtained in the continuum limit and chirally extrapolated to the physical pion mass enabling comparison with experiment.
We present the results of a lattice QCD calculation of the scalar and vector form factors for the unphysical $B_stoeta_s$ decay, over the full physical range of $q^2$. This is a useful testing ground both for lattice QCD and for our wider understandi ng of the behaviour of form factors. Calculations were performed using the highly improved staggered quark (HISQ) action on $N_f = 2 + 1 + 1$ gluon ensembles generated by the MILC Collaboration with an improved gluon action and HISQ sea quarks. We use three lattice spacings and a range of heavy quark masses from that of charm to bottom, all in the HISQ formalism. This permits an extrapolation in the heavy quark mass and lattice spacing to the physical point and nonperturbative renormalisation of the vector matrix element on the lattice. We find results in good agreement with previous work using nonrelativistic QCD $b$ quarks and with reduced errors at low $q^2$, supporting the effectiveness of our heavy HISQ technique as a method for calculating form factors involving heavy quarks. A comparison with results for other decays related by SU(3) flavour symmetry shows that the impact of changing the light daughter quark is substantial but changing the spectator quark has very little effect. We also map out form factor shape parameters as a function of heavy quark mass and compare to heavy quark effective theory expectations for mass scaling at low and high recoil. This work represents an important step in the progression from previous work on heavy-to-heavy decays ($bto c$) to the numerically more challenging heavy-to-light decays.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا